Suppr超能文献

使用工程化微管缺陷对驱动蛋白-1 运动性进行单分子研究。

Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects.

机构信息

Department of Physics, University of Massachusetts Amherst, Amherst, MA 01003, USA.

Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.

出版信息

Sci Rep. 2017 Mar 13;7:44290. doi: 10.1038/srep44290.

Abstract

The structure of the microtubule is tightly regulated in cells via a number of microtubule associated proteins and enzymes. Microtubules accumulate structural defects during polymerization, and defect size can further increase under mechanical stresses. Intriguingly, microtubule defects have been shown to be targeted for removal via severing enzymes or self-repair. The cell's control in defect removal suggests that defects can impact microtubule-based processes, including molecular motor-based intracellular transport. We previously demonstrated that microtubule defects influence cargo transport by multiple kinesin motors. However, mechanistic investigations of the observed effects remained challenging, since defects occur randomly during polymerization and are not directly observable in current motility assays. To overcome this challenge, we used end-to-end annealing to generate defects that are directly observable using standard epi-fluorescence microscopy. We demonstrate that the annealed sites recapitulate the effects of polymerization-derived defects on multiple-motor transport, and thus represent a simple and appropriate model for naturally-occurring defects. We found that single kinesins undergo premature dissociation, but not preferential pausing, at the annealed sites. Our findings provide the first mechanistic insight to how defects impact kinesin-based transport. Preferential dissociation on the single-molecule level has the potential to impair cargo delivery at locations of microtubule defect sites in vivo.

摘要

微管的结构在细胞内通过许多微管相关蛋白和酶进行严格调控。微管在聚合过程中积累结构缺陷,在机械应力下缺陷尺寸会进一步增大。有趣的是,已经证明微管缺陷可以通过切割酶或自我修复来靶向去除。细胞在缺陷去除中的控制表明缺陷会影响基于微管的过程,包括基于分子马达的细胞内运输。我们之前证明了微管缺陷通过多种驱动蛋白马达影响货物运输。然而,对观察到的效应的机制研究仍然具有挑战性,因为缺陷在聚合过程中随机出现,并且在当前的运动学测定中无法直接观察到。为了克服这一挑战,我们使用端到端退火来产生可以使用标准荧光显微镜直接观察到的缺陷。我们证明,退火的部位再现了聚合衍生的缺陷对多马达运输的影响,因此代表了自然发生的缺陷的简单和适当的模型。我们发现,单个驱动蛋白在退火部位过早解离,但不会优先暂停。我们的研究结果提供了第一个关于缺陷如何影响基于驱动蛋白的运输的机制见解。在单分子水平上的优先解离有可能损害体内微管缺陷部位的货物输送。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f99/5347089/57b9e342d2ad/srep44290-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验