文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Evaluation of silver nanoparticles synthetic potential of Couroupita guianensis Aubl., flower buds extract and their synergistic antibacterial activity.

作者信息

Rajesh Kumar T Venkata, Murthy J S R, Narayana Rao Madamsetti, Bhargava Y

机构信息

Department of Botany, Sri Venkateswara University, Tirupati, 517502, India.

Department of Biotechnology, Sri Venkateswara University, Tirupati, 517502, India.

出版信息

3 Biotech. 2016 Jun;6(1):92. doi: 10.1007/s13205-016-0407-9. Epub 2016 Mar 21.


DOI:10.1007/s13205-016-0407-9
PMID:28330162
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4801843/
Abstract

The present investigation demonstrates Couroupita guianensis flower buds extract mediated synthesis of stable silver nanoparticles (AgNPs). Instant formation of AgNPs was primarily confirmed by the appearance of yellowish brown colour and characteristic silver SPR band in the UV-visible spectrum. Elemental and crystalline natures of the AgNPs were identified from EDX and XRD pattern, respectively. Spherical morphology and the mono-disparity were revealed from TEM and AFM images. The particle size ranged from 5 to 30 nm and average size of 17 nm was consistent in XRD, TEM and AFM measurements. Possible reduction and stabilizing agents, viz., phenolics, flavonoids and proteins were identified from the characteristic FTIR peaks representing their functional groups. The strong antibacterial activity of synthesized AgNPs against Gram-positive and Gram-negative bacteria exhibited the potential for the formulation of synergistic bactericides by combining antibacterial properties of Couroupita flower buds extract and silver salts for biomedical applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/f73237f08dbc/13205_2016_407_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/fc28f3569446/13205_2016_407_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/80ed0a91f48d/13205_2016_407_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/8060339fb03e/13205_2016_407_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/c8aee65af5c7/13205_2016_407_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/12ec3fb81450/13205_2016_407_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/751f1ca09ef9/13205_2016_407_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/f2b2b31407b2/13205_2016_407_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/f73237f08dbc/13205_2016_407_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/fc28f3569446/13205_2016_407_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/80ed0a91f48d/13205_2016_407_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/8060339fb03e/13205_2016_407_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/c8aee65af5c7/13205_2016_407_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/12ec3fb81450/13205_2016_407_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/751f1ca09ef9/13205_2016_407_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/f2b2b31407b2/13205_2016_407_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3850/4801843/f73237f08dbc/13205_2016_407_Fig8_HTML.jpg

相似文献

[1]
Evaluation of silver nanoparticles synthetic potential of Couroupita guianensis Aubl., flower buds extract and their synergistic antibacterial activity.

3 Biotech. 2016-6

[2]
Biogenic Synthesis and Characterization of Antioxidant and Antimicrobial Silver Nanoparticles Using Flower Extract of Aubl.

Materials (Basel). 2021-11-13

[3]
Optimization of reaction conditions to fabricate nano-silver using Couroupita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect.

Spectrochim Acta A Mol Biomol Spectrosc. 2015-1-25

[4]
Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource.

Microb Pathog. 2018-5-25

[5]
Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.

Artif Cells Nanomed Biotechnol. 2017-8-8

[6]
Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4.

J Photochem Photobiol B. 2019-2-13

[7]
Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of , , and .

Pharmacogn Mag. 2017-7

[8]
Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron(III), antibacterial and antioxidant activity.

Mater Sci Eng C Mater Biol Appl. 2016-11-8

[9]
Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy.

J Photochem Photobiol B. 2019-10-31

[10]
Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators.

Environ Sci Pollut Res Int. 2016-4

引用本文的文献

[1]
Determination of Antioxidant, Cytotoxicity, and Anti-human Lung Cancer Properties of Silver Nanoparticles Green-Formulated by Foeniculum vulgare Extract Combined with Radiotherapy.

Biol Trace Elem Res. 2025-4

[2]
Exploring the Antimicrobial, Anticancer, and Apoptosis Inducing Ability of Biofabricated Silver Nanoparticles Using Flower Buds against the Human Osteosarcoma (MG-63) Cell Line via Flow Cytometry.

Bioengineering (Basel). 2023-7-10

[3]
Flower Bud Extract Mediated Green Synthesis of Silver Nanoparticles, Their Characterization, and Evaluation of Biological Applications.

Materials (Basel). 2022-12-16

[4]
Antibacterial, Antioxidant, Larvicidal and Anticancer Activities of Silver Nanoparticles Synthesized Using Extracts from Fruits of and Flowers of .

Molecules. 2022-11-12

[5]
In Vitro Antioxidant, Antitumor and Photocatalytic Activities of Silver Nanoparticles Synthesized Using Species: A Green Approach.

Molecules. 2021-12-2

[6]
Biogenic Synthesis and Characterization of Antioxidant and Antimicrobial Silver Nanoparticles Using Flower Extract of Aubl.

Materials (Basel). 2021-11-13

[7]
Pharmacological properties of biogenically synthesized silver nanoparticles using endophyte extract of against oxidative stress and pathogenic multidrug-resistant bacteria.

Saudi J Biol Sci. 2021-11

[8]
Phyto-fabrication, purification, characterisation, optimisation, and biological competence of nano-silver.

IET Nanobiotechnol. 2021-2

[9]
L.-Mediated Green Synthesis of Silver Nanoparticles Exhibiting Antioxidant and Anticancer Activities.

Nanomaterials (Basel). 2021-2-14

[10]
Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles using Plantago major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity.

Sci Rep. 2020-6-15

本文引用的文献

[1]
Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity.

Int J Nanomedicine. 2014-5-15

[2]
Phlorotannin-protein interactions.

J Chem Ecol. 1996-10

[3]
Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies.

Int J Nanomedicine. 2013-9-2

[4]
Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles.

IET Nanobiotechnol. 2011-9

[5]
Antioxidant properties of quercetin.

Adv Exp Med Biol. 2011

[6]
Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro.

Int J Biol Sci. 2010-9-21

[7]
The bactericidal effect of silver nanoparticles.

Nanotechnology. 2005-10

[8]
Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.

Colloids Surf B Biointerfaces. 2010-9-1

[9]
Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity.

Colloids Surf B Biointerfaces. 2009-10-15

[10]
Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.

Appl Environ Microbiol. 2007-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索