文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

L介导的具有抗氧化和抗癌活性的银纳米颗粒的绿色合成。

L.-Mediated Green Synthesis of Silver Nanoparticles Exhibiting Antioxidant and Anticancer Activities.

作者信息

Alahmad Abdalrahim, Feldhoff Armin, Bigall Nadja C, Rusch Pascal, Scheper Thomas, Walter Johanna-Gabriela

机构信息

Institut für Technische Chemie, Leibniz Universität Hannover, 30167 Lower Saxony, Germany.

Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, 30167 Lower Saxony, Germany.

出版信息

Nanomaterials (Basel). 2021 Feb 14;11(2):487. doi: 10.3390/nano11020487.


DOI:10.3390/nano11020487
PMID:33673018
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7918618/
Abstract

This contribution focuses on the green synthesis of silver nanoparticles (AgNPs) with a size < 100 nm for potential medical applications by using silver nitrate solution and L. (St John's wort) aqueous extracts. Various synthesis methods were used and compared with regard to their yield and quality of obtained AgNPs. Monodisperse spherical nanoparticles were generated with a size of approximately 20 to 50 nm as elucidated by different techniques (SEM, TEM). XRD measurements showed that metallic silver was formed and the particles possess a face-centered cubic structure (fcc). SEM images and FTIR spectra revealed that the AgNPs are covered by a protective surface layer composed of organic components originating from the plant extract. Ultraviolet-visible spectroscopy, dynamic light scattering, and zeta potential were also measured for biologically synthesized AgNPs. A potential mechanism of reducing silver ions to silver metal and protecting it in the nanoscale form has been proposed based on the obtained results. Moreover, the AgNPs prepared in the present study have been shown to exhibit a high antioxidant activity for 2, 2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, and super oxide anion radical and 2,2-diphenyl-1-picrylhydrazyl. Synthesized AgNPs showed high cytotoxicity by inhibiting cell viability for Hela, Hep G2, and A549 cells.

摘要

本研究聚焦于通过使用硝酸银溶液和贯叶连翘水提取物,绿色合成尺寸小于100 nm的银纳米颗粒(AgNPs),用于潜在的医学应用。使用了各种合成方法,并就所得AgNPs的产率和质量进行了比较。通过不同技术(扫描电子显微镜、透射电子显微镜)阐明,生成了尺寸约为20至50 nm的单分散球形纳米颗粒。X射线衍射测量表明形成了金属银,且颗粒具有面心立方结构(fcc)。扫描电子显微镜图像和傅里叶变换红外光谱显示,AgNPs被一层由源自植物提取物的有机成分组成的保护表面层覆盖。还对生物合成的AgNPs进行了紫外可见光谱、动态光散射和zeta电位测量。基于所得结果,提出了将银离子还原为金属银并将其保护为纳米级形式的潜在机制。此外,本研究制备的AgNPs已显示出对2, 2'-偶氮二(3-乙基苯并噻唑啉-6-磺酸)自由基阳离子、超氧阴离子自由基和2,2-二苯基-1-苦基肼具有高抗氧化活性。合成的AgNPs通过抑制Hela、Hep G2和A549细胞的细胞活力显示出高细胞毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/255af1ac0fd1/nanomaterials-11-00487-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/7ca21c126f2b/nanomaterials-11-00487-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/f6086bc509a1/nanomaterials-11-00487-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/b4cb08120777/nanomaterials-11-00487-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/354c878b2944/nanomaterials-11-00487-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/7a7f543a3a24/nanomaterials-11-00487-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/ab4f0cf8428c/nanomaterials-11-00487-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/42bb1536983a/nanomaterials-11-00487-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/c81e5de205b5/nanomaterials-11-00487-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/f050dc341fda/nanomaterials-11-00487-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/fac4a8054307/nanomaterials-11-00487-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/2c78d62e0f64/nanomaterials-11-00487-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/c3b87cf3a6c0/nanomaterials-11-00487-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/c4625d2a5d1f/nanomaterials-11-00487-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/879ae3ece458/nanomaterials-11-00487-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/255af1ac0fd1/nanomaterials-11-00487-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/7ca21c126f2b/nanomaterials-11-00487-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/f6086bc509a1/nanomaterials-11-00487-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/b4cb08120777/nanomaterials-11-00487-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/354c878b2944/nanomaterials-11-00487-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/7a7f543a3a24/nanomaterials-11-00487-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/ab4f0cf8428c/nanomaterials-11-00487-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/42bb1536983a/nanomaterials-11-00487-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/c81e5de205b5/nanomaterials-11-00487-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/f050dc341fda/nanomaterials-11-00487-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/fac4a8054307/nanomaterials-11-00487-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/2c78d62e0f64/nanomaterials-11-00487-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/c3b87cf3a6c0/nanomaterials-11-00487-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/c4625d2a5d1f/nanomaterials-11-00487-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/879ae3ece458/nanomaterials-11-00487-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7918618/255af1ac0fd1/nanomaterials-11-00487-g015.jpg

相似文献

[1]
L.-Mediated Green Synthesis of Silver Nanoparticles Exhibiting Antioxidant and Anticancer Activities.

Nanomaterials (Basel). 2021-2-14

[2]
Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of , , and .

Pharmacogn Mag. 2017-7

[3]
Green Synthesis of Silver Nanoparticles Using L. Aqueous Extract with the Evaluation of Its Antibacterial Activity against Clinical and Food Pathogens.

Pharmaceutics. 2022-5-21

[4]
Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies.

J Photochem Photobiol B. 2018-2-14

[5]
Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.

Artif Cells Nanomed Biotechnol. 2017-8-8

[6]
Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus × clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells.

Environ Sci Pollut Res Int. 2017-3-17

[7]
Biosynthesized Silver Nanoparticles Using Leaf Extract as a Potential Antioxidant and Anticancer Agent.

ACS Omega. 2023-8-14

[8]
Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen () pericarp waste extracts.

Int J Nanomedicine. 2017-9-14

[9]
In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application.

J Photochem Photobiol B. 2016-6

[10]
Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts.

Mater Sci Eng C Mater Biol Appl. 2018-2-16

引用本文的文献

[1]
Sustainable packaging using Aloe vera infused mango starch-wool keratin biocomposite films to extend the shelf life of mango.

Sci Rep. 2025-8-8

[2]
An Overview of the Bioactivity of Spontaneous Medicinal Plants Suitable for the Improvement of Lung Cancer Therapies.

Pharmaceutics. 2025-3-5

[3]
Characterization of Silver Nanoparticles Synthesized Using Hypericum perforatum L. and Their Effects on Staphylococcus aureus.

Microsc Res Tech. 2025-8

[4]
A study on the effect of Hypericum perforatum L. extract on vanadium toxicity in Allium cepa L.

Sci Rep. 2024-11-18

[5]
Synthesis of metallic nanoparticles using biometabolites: mechanisms and applications.

Biometals. 2025-2

[6]
Antibacterial, antioxidant, and anti-giardia properties of the essential oil, hydroalcoholic extract, and green synthesis of the silver nanoparticles of Salvia mirzayanii plant.

Sci Rep. 2024-10-1

[7]
Green Synthesis of Silver Nanoparticle Using Black Mulberry and Characterization, Phytochemical, and Bioactivity.

Antibiotics (Basel). 2024-7-24

[8]
A systematic review on green synthesis of silver nanoparticles using plants extract and their bio-medical applications.

Heliyon. 2024-5-1

[9]
Bifunctional folic acid targeted biopolymer Ag@NMOF nanocomposite [{Zn2 (1,4-bdc) 2 (DABCO)} n] as a novel theranostic agent for molecular imaging of colon cancer by SERS.

Heliyon. 2024-4-18

[10]
The Characterization and Study of Antibacterial, Free Radical Scavenging, and Anticancer Potential of -Mediated Silver Nanoparticles.

Molecules. 2023-11-25

本文引用的文献

[1]
Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells.

J Mater Chem B. 2015-9-28

[2]
Genotoxic effects of silver nanoparticles with/without coating in human liver HepG2 cells and in mice.

J Appl Toxicol. 2019-1-31

[3]
Biosynthesis of silver nanoparticles formation from stem metabolites and their broad spectrum biological activities.

J Genet Eng Biotechnol. 2018-6

[4]
Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum.

J Ayurveda Integr Med. 2020

[5]
In Vitro Studies of the Antimicrobial and Free-Radical Scavenging Potentials of Silver Nanoparticles Biosynthesized From the Extract of .

Anal Chem Insights. 2018-7-2

[6]
Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property.

Sci Rep. 2017-11-20

[7]
Dextran coated silver nanoparticles - Chemical sensor for selective cysteine detection.

Colloids Surf B Biointerfaces. 2017-9-12

[8]
The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines.

J Photochem Photobiol B. 2017-5-24

[9]
Evaluation of silver nanoparticles synthetic potential of Couroupita guianensis Aubl., flower buds extract and their synergistic antibacterial activity.

3 Biotech. 2016-6

[10]
Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities.

Artif Cells Nanomed Biotechnol. 2016-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索