Boada Jordi, Arthur Rohan, Alonso David, Pagès Jordi F, Pessarrodona Albert, Oliva Silvia, Ceccherelli Giulia, Piazzi Luigi, Romero Javier, Alcoverro Teresa
Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la cala Sant Francesc 14, 17300 Blanes, Spain.
Proc Biol Sci. 2017 Mar 29;284(1851). doi: 10.1098/rspb.2016.2814.
Predicting where state-changing thresholds lie can be inherently complex in ecosystems characterized by nonlinear dynamics. Unpacking the mechanisms underlying these transitions can help considerably reduce this unpredictability. We used empirical observations, field and laboratory experiments, and mathematical models to examine how differences in nutrient regimes mediate the capacity of macrophyte communities to sustain sea urchin grazing. In relatively nutrient-rich conditions, macrophyte systems were more resilient to grazing, shifting to barrens beyond 1 800 g m (urchin biomass), more than twice the threshold of nutrient-poor conditions. The mechanisms driving these differences are linked to how nutrients mediate urchin foraging and algal growth: controlled experiments showed that low-nutrient regimes trigger compensatory feeding and reduce plant growth, mechanisms supported by our consumer-resource model. These mechanisms act together to halve macrophyte community resilience. Our study demonstrates that by mediating the underlying drivers, inherent conditions can strongly influence the buffer capacity of nonlinear systems.
在以非线性动力学为特征的生态系统中,预测状态变化阈值的位置本质上可能很复杂。剖析这些转变背后的机制有助于大幅降低这种不可预测性。我们利用实证观察、野外和实验室实验以及数学模型,来研究营养状况的差异如何调节大型植物群落维持海胆啃食的能力。在相对营养丰富的条件下,大型植物系统对啃食更具恢复力,海胆生物量超过1800克/平方米时会转变为 barren 状态,这一阈值是营养贫瘠条件下的两倍多。驱动这些差异的机制与营养物质如何调节海胆觅食和藻类生长有关:对照实验表明,低营养状况会引发补偿性摄食并降低植物生长,我们的消费者-资源模型支持这些机制。这些机制共同作用,使大型植物群落的恢复力减半。我们的研究表明,通过调节潜在驱动因素,内在条件可强烈影响非线性系统的缓冲能力。