McCalmont Jon P, Hastings Astley, McNamara Niall P, Richter Goetz M, Robson Paul, Donnison Iain S, Clifton-Brown John
Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan, Aberystwyth Wales SY23 3EQ UK.
Institute of Biological and Environmental Science University of Aberdeen 24 St Machar Drive Aberdeen AB24 3UU UK.
Glob Change Biol Bioenergy. 2017 Mar;9(3):489-507. doi: 10.1111/gcbb.12294. Epub 2015 Aug 18.
Planting the perennial biomass crop in the UK could offset 2-13 Mt oil eq. yr, contributing up to 10% of current energy use. Policymakers need assurance that upscaling production can be performed sustainably without negatively impacting essential food production or the wider environment. This study reviews a large body of relevant literature into concise summary statements. Perennial has energy output/input ratios 10 times higher (47.3 ± 2.2) than annual crops used for energy (4.7 ± 0.2 to 5.5 ± 0.2), and the total carbon cost of energy production (1.12 g CO-C eq. MJ) is 20-30 times lower than fossil fuels. Planting on former arable land generally increases soil organic carbon (SOC) with sequestering 0.7-2.2 Mg C4-C ha yr. Cultivation on grassland can cause a disturbance loss of SOC which is likely to be recovered during the lifetime of the crop and is potentially mitigated by fossil fuel offset. NO emissions can be five times lower under unfertilized than annual crops and up to 100 times lower than intensive pasture. Nitrogen fertilizer is generally unnecessary except in low fertility soils. Herbicide is essential during the establishment years after which natural weed suppression by shading is sufficient. Pesticides are unnecessary. Water-use efficiency is high (e.g. 5.5-9.2 g aerial DM (kg HO), but high biomass productivity means increased water demand compared to cereal crops. The perennial nature and belowground biomass improves soil structure, increases water-holding capacity (up by 100-150 mm), and reduces run-off and erosion. Overwinter ripening increases landscape structural resources for wildlife. Reduced management intensity promotes earthworm diversity and abundance although poor litter palatability may reduce individual biomass. Chemical leaching into field boundaries is lower than comparable agriculture, improving soil and water habitat quality.
在英国种植多年生生物质作物每年可抵消200万至1300万吨油当量,占当前能源使用量的10%。政策制定者需要确保扩大生产能够可持续进行,而不会对基本粮食生产或更广泛的环境产生负面影响。本研究将大量相关文献综述为简明的总结陈述。多年生作物的能量产出/投入比(47.3±2.2)比用于能源的一年生作物(4.7±0.2至5.5±0.2)高10倍,能源生产的总碳成本(1.12克碳-碳当量/兆焦)比化石燃料低20至30倍。在前耕地种植通常会增加土壤有机碳(SOC),每年固碳0.7至2.2吨碳-碳/公顷。在草地上种植会导致SOC的扰动损失,不过在作物生长期间可能会恢复,并且可能通过化石燃料抵消来减轻。在未施肥的情况下,一氧化氮排放量可能比一年生作物低五倍,比集约化牧场低达100倍。除了在低肥力土壤中,通常不需要氮肥。在种植后的最初几年除草剂是必需的,之后通过遮荫自然抑制杂草就足够了。不需要杀虫剂。水分利用效率很高(例如5.5至9.2克地上部干物质/(千克水)),但高生物量生产力意味着与谷类作物相比需水量增加。多年生特性和地下生物量改善了土壤结构,增加了持水量(增加100至150毫米),并减少了径流和侵蚀。越冬成熟增加了野生动物的景观结构资源。管理强度降低促进了蚯蚓的多样性和数量,尽管凋落物适口性差可能会降低个体生物量。化学物质向田间边界的淋溶低于可比农业,改善了土壤和水的栖息地质量。