Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, WA 99352, United States.
Anal Chem. 2017 Jun 20;89(12):6432-6439. doi: 10.1021/acs.analchem.7b00189. Epub 2017 May 25.
We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within structures for lossless ion manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also efficient ion population compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a SLIM serpentine ultralong path with extended routing (SUPER) region after which CRIMP compression allows the large ion populations to be "squeezed". The SLIM SUPER IM module has two regions, one operating with conventional traveling waves (i.e., traveling trap; TT region) and the second having an intermittently pausing or "stuttering" TW (i.e., stuttering trap; ST region). When a stationary voltage profile was used in the ST region, ions are blocked at the TT-ST interface and accumulated in the TT region and then can be released by resuming a conventional TW in the ST region. The population can also be compressed using CRIMP by the repetitive merging of ions distributed over multiple TW bins in the TT region into a single TW bin in the ST region. Ion accumulation followed by CRIMP compression provides the basis for the use of larger ion populations for IM separations. We show that over 10 ions can be accumulated with high efficiency in the present device and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Approximately 5 × 10 charges introduced from an electrospray ionization source were trapped for a 40 s accumulation period, more than 2 orders of magnitude greater than the previously reported charge capacity of an ion funnel trap. Importantly, we show that extended ion accumulation in conjunction with CRIMP compression and multiple passes through the serpentine path provides the basis for a highly desirable combination of ultrahigh sensitivity and SLIM SUPER high-resolution IM separations.
我们报告了在结构中实现基于行波(TW)的压缩比离子迁移率编程(CRIMP)方法的情况,该方法可同时极大地增加被困离子的电荷量,并有效压缩离子群体,从而用于离子迁移率(IM)分离。在具有扩展布线的 SLIM 蛇形超长路径(SUPER)区域中进行离子积累,然后通过 CRIMP 压缩可将大量离子群体“挤压”。SLIM SUPER IM 模块具有两个区域,一个区域使用常规行波(即行波阱;TT 区域),第二个区域具有间歇性暂停或“卡顿”行波(即卡顿阱;ST 区域)。当 ST 区域中使用固定电压分布时,离子在 TT-ST 界面处被阻挡,并在 TT 区域中积累,然后可以通过在 ST 区域中恢复常规 TW 来释放。通过在 TT 区域中将分布在多个 TW -bin 中的离子重复合并到 ST 区域中的单个 TW-bin 中,也可以使用 CRIMP 对离子群体进行压缩。离子积累后再进行 CRIMP 压缩,为使用更大的离子群体进行 IM 分离提供了基础。我们表明,在当前设备中可以高效率地积累超过 10 个离子,并且随后的压缩程度仅受捕获区域的空间电荷容量限制。大约 5×10 个从电喷雾电离源引入的电荷被捕获了 40 s 的积累时间,比以前报道的离子阱的电荷容量高出 2 个数量级以上。重要的是,我们表明,与 CRIMP 压缩和多次通过蛇形路径结合使用的离子积累可以为超高灵敏度和 SLIM SUPER 高分辨率 IM 分离的理想组合提供基础。