Suppr超能文献

用于从群体尖峰序列中恢复单试次动力学的变分潜在高斯过程

Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains.

作者信息

Zhao Yuan, Park Il Memming

机构信息

Department of Neurobiology and Behavior and Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, U.S.A.

Department of Neurobiology and Behavior; Department of Applied Mathematics and Statistics; and Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, 11794, U.S.A.

出版信息

Neural Comput. 2017 May;29(5):1293-1316. doi: 10.1162/NECO_a_00953. Epub 2017 Mar 23.

Abstract

When governed by underlying low-dimensional dynamics, the interdependence of simultaneously recorded populations of neurons can be explained by a small number of shared factors, or a low-dimensional trajectory. Recovering these latent trajectories, particularly from single-trial population recordings, may help us understand the dynamics that drive neural computation. However, due to the biophysical constraints and noise in the spike trains, inferring trajectories from data is a challenging statistical problem in general. Here, we propose a practical and efficient inference method, the variational latent gaussian process (vLGP). The vLGP combines a generative model with a history-dependent point process observation, together with a smoothness prior on the latent trajectories. The vLGP improves on earlier methods for recovering latent trajectories, which assume either observation models inappropriate for point processes or linear dynamics. We compare and validate vLGP on both simulated data sets and population recordings from the primary visual cortex. In the V1 data set, we find that vLGP achieves substantially higher performance than previous methods for predicting omitted spike trains, as well as capturing both the toroidal topology of visual stimuli space and the noise correlation. These results show that vLGP is a robust method with the potential to reveal hidden neural dynamics from large-scale neural recordings.

摘要

当由潜在的低维动力学支配时,同时记录的神经元群体之间的相互依赖性可以用少数共享因素或低维轨迹来解释。恢复这些潜在轨迹,特别是从单试次群体记录中恢复,可能有助于我们理解驱动神经计算的动力学。然而,由于尖峰序列中的生物物理限制和噪声,从数据中推断轨迹通常是一个具有挑战性的统计问题。在这里,我们提出了一种实用且高效的推断方法,即变分潜在高斯过程(vLGP)。vLGP将一个生成模型与一个依赖历史的点过程观测相结合,同时对潜在轨迹有一个平滑先验。vLGP改进了早期用于恢复潜在轨迹的方法,早期方法要么假设观测模型不适用于点过程,要么假设线性动力学。我们在模拟数据集和来自初级视觉皮层的群体记录上对vLGP进行了比较和验证。在V1数据集中,我们发现vLGP在预测遗漏的尖峰序列以及捕捉视觉刺激空间的环形拓扑和噪声相关性方面比以前的方法具有显著更高的性能。这些结果表明,vLGP是一种稳健的方法,有潜力从大规模神经记录中揭示隐藏的神经动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验