Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.
Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.
PLoS Comput Biol. 2024 Apr 26;20(4):e1011975. doi: 10.1371/journal.pcbi.1011975. eCollection 2024 Apr.
The brain produces diverse functions, from perceiving sounds to producing arm reaches, through the collective activity of populations of many neurons. Determining if and how the features of these exogenous variables (e.g., sound frequency, reach angle) are reflected in population neural activity is important for understanding how the brain operates. Often, high-dimensional neural population activity is confined to low-dimensional latent spaces. However, many current methods fail to extract latent spaces that are clearly structured by exogenous variables. This has contributed to a debate about whether or not brains should be thought of as dynamical systems or representational systems. Here, we developed a new latent process Bayesian regression framework, the orthogonal stochastic linear mixing model (OSLMM) which introduces an orthogonality constraint amongst time-varying mixture coefficients, and provide Markov chain Monte Carlo inference procedures. We demonstrate superior performance of OSLMM on latent trajectory recovery in synthetic experiments and show superior computational efficiency and prediction performance on several real-world benchmark data sets. We primarily focus on demonstrating the utility of OSLMM in two neural data sets: μECoG recordings from rat auditory cortex during presentation of pure tones and multi-single unit recordings form monkey motor cortex during complex arm reaching. We show that OSLMM achieves superior or comparable predictive accuracy of neural data and decoding of external variables (e.g., reach velocity). Most importantly, in both experimental contexts, we demonstrate that OSLMM latent trajectories directly reflect features of the sounds and reaches, demonstrating that neural dynamics are structured by neural representations. Together, these results demonstrate that OSLMM will be useful for the analysis of diverse, large-scale biological time-series datasets.
大脑通过许多神经元群体的集体活动,产生从感知声音到产生手臂运动等各种功能。确定这些外源性变量(例如声音频率、到达角度)的特征是否以及如何反映在群体神经活动中,对于理解大脑的运作方式非常重要。通常,高维神经群体活动被限制在低维潜在空间中。然而,许多当前的方法未能提取明显受外源性变量结构的潜在空间。这导致了关于大脑是否应该被视为动力系统或表示系统的争论。在这里,我们开发了一种新的潜在过程贝叶斯回归框架,即正交随机线性混合模型(OSLMM),它在时变混合系数之间引入了正交性约束,并提供了马尔可夫链蒙特卡罗推断程序。我们在合成实验中展示了 OSLMM 在潜在轨迹恢复方面的卓越性能,并在几个真实基准数据集上展示了卓越的计算效率和预测性能。我们主要侧重于在两个神经数据集上展示 OSLMM 的实用性:在呈现纯音时大鼠听觉皮层的 μECoG 记录,以及在复杂手臂运动期间猴子运动皮层的多单单元记录。我们表明,OSLMM 可以实现对神经数据的预测准确性和对外部变量(例如,到达速度)的解码的提高或相当。最重要的是,在这两种实验情况下,我们都证明了 OSLMM 的潜在轨迹直接反映了声音和到达的特征,表明神经动力学受神经表示的结构约束。总之,这些结果表明 OSLMM 将有助于分析各种大规模生物时间序列数据集。