Wu Anqi, Roy Nicholas A, Keeley Stephen, Pillow Jonathan W
Princeton Neuroscience Institute, Princeton University.
Adv Neural Inf Process Syst. 2017 Dec;30:3496-3505.
A large body of recent work focuses on methods for extracting low-dimensional latent structure from multi-neuron spike train data. Most such methods employ either linear latent dynamics or linear mappings from latent space to log spike rates. Here we propose a doubly nonlinear latent variable model that can identify low-dimensional structure underlying apparently high-dimensional spike train data. We introduce the (P-GPLVM), which consists of Poisson spiking observations and two underlying Gaussian processes-one governing a temporal latent variable and another governing a set of nonlinear tuning curves. The use of nonlinear tuning curves enables discovery of low-dimensional latent structure even when spike responses exhibit high linear dimensionality (e.g., as found in hippocampal place cell codes). To learn the model from data, we introduce the , a fast approximate inference method that allows us to efficiently optimize the latent path while marginalizing over tuning curves. We show that this method outperforms previous Laplace-approximation-based inference methods in both the speed of convergence and accuracy. We apply the model to spike trains recorded from hippocampal place cells and show that it compares favorably to a variety of previous methods for latent structure discovery, including variational auto-encoder (VAE) based methods that parametrize the nonlinear mapping from latent space to spike rates with a deep neural network.
近期大量的研究工作聚焦于从多神经元尖峰序列数据中提取低维潜在结构的方法。大多数此类方法采用线性潜在动力学或从潜在空间到对数尖峰率的线性映射。在此,我们提出一种双非线性潜在变量模型,它能够识别看似高维尖峰序列数据背后的低维结构。我们引入了泊松 - 广义概率潜在变量模型(P - GPLVM),它由泊松尖峰观测以及两个潜在的高斯过程组成——一个控制时间潜在变量,另一个控制一组非线性调谐曲线。即使尖峰响应呈现出高线性维度(例如,如在海马位置细胞编码中所发现的),非线性调谐曲线的使用也能使低维潜在结构得以发现。为了从数据中学习该模型,我们引入了一种快速近似推断方法,它允许我们在对调谐曲线进行边缘化的同时有效地优化潜在路径。我们表明,该方法在收敛速度和准确性方面均优于先前基于拉普拉斯近似的推断方法。我们将该模型应用于从海马位置细胞记录的尖峰序列,并表明它与多种先前用于潜在结构发现的方法相比具有优势,包括基于变分自编码器(VAE)的方法,这些方法用深度神经网络对从潜在空间到尖峰率的非线性映射进行参数化。