Suppr超能文献

基于高斯过程的多元脉冲序列数据中的非线性潜在结构发现

Gaussian process based nonlinear latent structure discovery in multivariate spike train data.

作者信息

Wu Anqi, Roy Nicholas A, Keeley Stephen, Pillow Jonathan W

机构信息

Princeton Neuroscience Institute, Princeton University.

出版信息

Adv Neural Inf Process Syst. 2017 Dec;30:3496-3505.

Abstract

A large body of recent work focuses on methods for extracting low-dimensional latent structure from multi-neuron spike train data. Most such methods employ either linear latent dynamics or linear mappings from latent space to log spike rates. Here we propose a doubly nonlinear latent variable model that can identify low-dimensional structure underlying apparently high-dimensional spike train data. We introduce the (P-GPLVM), which consists of Poisson spiking observations and two underlying Gaussian processes-one governing a temporal latent variable and another governing a set of nonlinear tuning curves. The use of nonlinear tuning curves enables discovery of low-dimensional latent structure even when spike responses exhibit high linear dimensionality (e.g., as found in hippocampal place cell codes). To learn the model from data, we introduce the , a fast approximate inference method that allows us to efficiently optimize the latent path while marginalizing over tuning curves. We show that this method outperforms previous Laplace-approximation-based inference methods in both the speed of convergence and accuracy. We apply the model to spike trains recorded from hippocampal place cells and show that it compares favorably to a variety of previous methods for latent structure discovery, including variational auto-encoder (VAE) based methods that parametrize the nonlinear mapping from latent space to spike rates with a deep neural network.

摘要

近期大量的研究工作聚焦于从多神经元尖峰序列数据中提取低维潜在结构的方法。大多数此类方法采用线性潜在动力学或从潜在空间到对数尖峰率的线性映射。在此,我们提出一种双非线性潜在变量模型,它能够识别看似高维尖峰序列数据背后的低维结构。我们引入了泊松 - 广义概率潜在变量模型(P - GPLVM),它由泊松尖峰观测以及两个潜在的高斯过程组成——一个控制时间潜在变量,另一个控制一组非线性调谐曲线。即使尖峰响应呈现出高线性维度(例如,如在海马位置细胞编码中所发现的),非线性调谐曲线的使用也能使低维潜在结构得以发现。为了从数据中学习该模型,我们引入了一种快速近似推断方法,它允许我们在对调谐曲线进行边缘化的同时有效地优化潜在路径。我们表明,该方法在收敛速度和准确性方面均优于先前基于拉普拉斯近似的推断方法。我们将该模型应用于从海马位置细胞记录的尖峰序列,并表明它与多种先前用于潜在结构发现的方法相比具有优势,包括基于变分自编码器(VAE)的方法,这些方法用深度神经网络对从潜在空间到尖峰率的非线性映射进行参数化。

相似文献

2
Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding.
Neural Comput. 2024 Jul 19;36(8):1449-1475. doi: 10.1162/neco_a_01685.
3
Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding.
bioRxiv. 2024 Mar 7:2024.03.04.583340. doi: 10.1101/2024.03.04.583340.
4
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains.
Neural Comput. 2017 May;29(5):1293-1316. doi: 10.1162/NECO_a_00953. Epub 2017 Mar 23.
5
The spike trains of inhibited pacemaker neurons seen through the magnifying glass of nonlinear analyses.
Neuroscience. 1998 Dec;87(4):741-66. doi: 10.1016/s0306-4522(98)00086-4.
6
Shared Autoencoder Gaussian Process Latent Variable Model for Visual Classification.
IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4272-4286. doi: 10.1109/TNNLS.2017.2761401. Epub 2017 Oct 31.
7
A latent manifold Markovian dynamics Gaussian process.
IEEE Trans Neural Netw Learn Syst. 2015 Jan;26(1):70-83. doi: 10.1109/TNNLS.2014.2311073.
8
Supervised latent linear Gaussian process latent variable model for dimensionality reduction.
IEEE Trans Syst Man Cybern B Cybern. 2012 Dec;42(6):1620-32. doi: 10.1109/TSMCB.2012.2196995. Epub 2012 May 17.
9
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.

引用本文的文献

1
Fast Multigroup Gaussian Process Factor Models.
Neural Comput. 2025 Jul 24:1-74. doi: 10.1162/neco.a.22.
2
The dynamics and geometry of choice in the premotor cortex.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09199-1.
3
Predicting proprioceptive cortical anatomy and neural coding with topographic autoencoders.
PLoS Comput Biol. 2024 Dec 4;20(12):e1012614. doi: 10.1371/journal.pcbi.1012614. eCollection 2024 Dec.
4
Neural dynamics in the orbitofrontal cortex reveal cognitive strategies.
bioRxiv. 2024 Oct 29:2024.10.29.620879. doi: 10.1101/2024.10.29.620879.
5
Dissociative and prioritized modeling of behaviorally relevant neural dynamics using recurrent neural networks.
Nat Neurosci. 2024 Oct;27(10):2033-2045. doi: 10.1038/s41593-024-01731-2. Epub 2024 Sep 6.
7
Bayesian inference of structured latent spaces from neural population activity with the orthogonal stochastic linear mixing model.
PLoS Comput Biol. 2024 Apr 26;20(4):e1011975. doi: 10.1371/journal.pcbi.1011975. eCollection 2024 Apr.
8
Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding.
bioRxiv. 2024 Mar 7:2024.03.04.583340. doi: 10.1101/2024.03.04.583340.
9
Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2212887121. doi: 10.1073/pnas.2212887121. Epub 2024 Feb 9.
10
Estimating neuronal firing density: A quantitative analysis of firing rate map algorithms.
PLoS Comput Biol. 2023 Dec 27;19(12):e1011763. doi: 10.1371/journal.pcbi.1011763. eCollection 2023 Dec.

本文引用的文献

1
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains.
Neural Comput. 2017 May;29(5):1293-1316. doi: 10.1162/NECO_a_00953. Epub 2017 Mar 23.
2
A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation.
J Neurosci Methods. 2016 Apr 1;263:36-47. doi: 10.1016/j.jneumeth.2016.01.022. Epub 2016 Feb 5.
4
Dimensionality reduction for large-scale neural recordings.
Nat Neurosci. 2014 Nov;17(11):1500-9. doi: 10.1038/nn.3776. Epub 2014 Aug 24.
5
A new look at state-space models for neural data.
J Comput Neurosci. 2010 Aug;29(1-2):107-126. doi: 10.1007/s10827-009-0179-x. Epub 2009 Aug 1.
6
Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity.
J Neurophysiol. 2009 Jul;102(1):614-35. doi: 10.1152/jn.90941.2008. Epub 2009 Apr 8.
7
Microstructure of a spatial map in the entorhinal cortex.
Nature. 2005 Aug 11;436(7052):801-6. doi: 10.1038/nature03721. Epub 2005 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验