Suppr超能文献

基于高斯过程的多元脉冲序列数据中的非线性潜在结构发现

Gaussian process based nonlinear latent structure discovery in multivariate spike train data.

作者信息

Wu Anqi, Roy Nicholas A, Keeley Stephen, Pillow Jonathan W

机构信息

Princeton Neuroscience Institute, Princeton University.

出版信息

Adv Neural Inf Process Syst. 2017 Dec;30:3496-3505.

Abstract

A large body of recent work focuses on methods for extracting low-dimensional latent structure from multi-neuron spike train data. Most such methods employ either linear latent dynamics or linear mappings from latent space to log spike rates. Here we propose a doubly nonlinear latent variable model that can identify low-dimensional structure underlying apparently high-dimensional spike train data. We introduce the (P-GPLVM), which consists of Poisson spiking observations and two underlying Gaussian processes-one governing a temporal latent variable and another governing a set of nonlinear tuning curves. The use of nonlinear tuning curves enables discovery of low-dimensional latent structure even when spike responses exhibit high linear dimensionality (e.g., as found in hippocampal place cell codes). To learn the model from data, we introduce the , a fast approximate inference method that allows us to efficiently optimize the latent path while marginalizing over tuning curves. We show that this method outperforms previous Laplace-approximation-based inference methods in both the speed of convergence and accuracy. We apply the model to spike trains recorded from hippocampal place cells and show that it compares favorably to a variety of previous methods for latent structure discovery, including variational auto-encoder (VAE) based methods that parametrize the nonlinear mapping from latent space to spike rates with a deep neural network.

摘要

近期大量的研究工作聚焦于从多神经元尖峰序列数据中提取低维潜在结构的方法。大多数此类方法采用线性潜在动力学或从潜在空间到对数尖峰率的线性映射。在此,我们提出一种双非线性潜在变量模型,它能够识别看似高维尖峰序列数据背后的低维结构。我们引入了泊松 - 广义概率潜在变量模型(P - GPLVM),它由泊松尖峰观测以及两个潜在的高斯过程组成——一个控制时间潜在变量,另一个控制一组非线性调谐曲线。即使尖峰响应呈现出高线性维度(例如,如在海马位置细胞编码中所发现的),非线性调谐曲线的使用也能使低维潜在结构得以发现。为了从数据中学习该模型,我们引入了一种快速近似推断方法,它允许我们在对调谐曲线进行边缘化的同时有效地优化潜在路径。我们表明,该方法在收敛速度和准确性方面均优于先前基于拉普拉斯近似的推断方法。我们将该模型应用于从海马位置细胞记录的尖峰序列,并表明它与多种先前用于潜在结构发现的方法相比具有优势,包括基于变分自编码器(VAE)的方法,这些方法用深度神经网络对从潜在空间到尖峰率的非线性映射进行参数化。

相似文献

6
Shared Autoencoder Gaussian Process Latent Variable Model for Visual Classification.用于视觉分类的共享自动编码器高斯过程潜在变量模型
IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4272-4286. doi: 10.1109/TNNLS.2017.2761401. Epub 2017 Oct 31.
7
A latent manifold Markovian dynamics Gaussian process.一个潜在流形马尔可夫动力学高斯过程。
IEEE Trans Neural Netw Learn Syst. 2015 Jan;26(1):70-83. doi: 10.1109/TNNLS.2014.2311073.
8
Supervised latent linear Gaussian process latent variable model for dimensionality reduction.用于降维的监督潜线性高斯过程潜变量模型
IEEE Trans Syst Man Cybern B Cybern. 2012 Dec;42(6):1620-32. doi: 10.1109/TSMCB.2012.2196995. Epub 2012 May 17.

引用本文的文献

1
Fast Multigroup Gaussian Process Factor Models.快速多组高斯过程因子模型
Neural Comput. 2025 Jul 24:1-74. doi: 10.1162/neco.a.22.
10

本文引用的文献

4
Dimensionality reduction for large-scale neural recordings.大规模神经记录的降维处理
Nat Neurosci. 2014 Nov;17(11):1500-9. doi: 10.1038/nn.3776. Epub 2014 Aug 24.
5
A new look at state-space models for neural data.神经数据状态空间模型新视角。
J Comput Neurosci. 2010 Aug;29(1-2):107-126. doi: 10.1007/s10827-009-0179-x. Epub 2009 Aug 1.
7
Microstructure of a spatial map in the entorhinal cortex.内嗅皮质中空间图谱的微观结构。
Nature. 2005 Aug 11;436(7052):801-6. doi: 10.1038/nature03721. Epub 2005 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验