McCart Jonathan D, Sedler Andrew R, Versteeg Christopher, Mifsud Domenick, Rigotti-Thompson Mattia, Pandarinath Chethan
Center for Machine Learning, Georgia Tech.
Department of Biomedical Engineering, Georgia Tech and Emory University.
ArXiv. 2024 Jul 30:arXiv:2407.21195v1.
Recent advances in recording technology have allowed neuroscientists to monitor activity from thousands of neurons simultaneously. Latent variable models are increasingly valuable for distilling these recordings into compact and interpretable representations. Here we propose a new approach to neural data analysis that leverages advances in conditional generative modeling to enable the unsupervised inference of disentangled behavioral variables from recorded neural activity. Our approach builds on InfoDiffusion, which augments diffusion models with a set of latent variables that capture important factors of variation in the data. We apply our model, called Generating Neural Observations Conditioned on Codes with High Information (GNOCCHI), to time series neural data and test its application to synthetic and biological recordings of neural activity during reaching. In comparison to a VAE-based sequential autoencoder, GNOCCHI learns higher-quality latent spaces that are more clearly structured and more disentangled with respect to key behavioral variables. These properties enable accurate generation of novel samples (unseen behavioral conditions) through simple linear traversal of the latent spaces produced by GNOCCHI. Our work demonstrates the potential of unsupervised, information-based models for the discovery of interpretable latent spaces from neural data, enabling researchers to generate high-quality samples from unseen conditions.
记录技术的最新进展使神经科学家能够同时监测数千个神经元的活动。潜在变量模型对于将这些记录提炼成紧凑且可解释的表示形式越来越有价值。在这里,我们提出了一种新的神经数据分析方法,该方法利用条件生成建模的进展,从记录的神经活动中无监督地推断出解缠的行为变量。我们的方法基于InfoDiffusion,它通过一组捕获数据中重要变化因素的潜在变量来增强扩散模型。我们将我们的模型,称为基于高信息代码生成神经观测(GNOCCHI),应用于时间序列神经数据,并测试其在伸手过程中神经活动的合成和生物记录中的应用。与基于变分自编码器(VAE)的序列自动编码器相比,GNOCCHI学习到更高质量的潜在空间,这些潜在空间结构更清晰,并且在关键行为变量方面更解缠。这些特性通过对GNOCCHI产生的潜在空间进行简单的线性遍历,能够准确地生成新的样本(未见的行为条件)。我们的工作展示了基于无监督、信息的模型从神经数据中发现可解释潜在空间的潜力,使研究人员能够从未见的条件中生成高质量的样本。