IEEE Trans Image Process. 2018 Mar;27(3):1512-1525. doi: 10.1109/TIP.2017.2778570. Epub 2017 Nov 29.
High dynamic range (HDR) image visual quality assessment in the absence of a reference image is challenging. This research topic has not been adequately studied largely due to the high cost of HDR display devices. Nevertheless, HDR imaging technology has attracted increasing attention, because it provides more realistic content, consistent to what the human visual system perceives. We propose a new no-reference image quality assessment (NR-IQA) model for HDR data based on convolutional neural networks. The proposed model is able to detect visual artifacts, taking into consideration perceptual masking effects, in a distorted HDR image without any reference. The error and perceptual masking values are measured separately, yet sequentially, and then processed by a mixing function to predict the perceived quality of the distorted image. Instead of using simple stimuli and psychovisual experiments, perceptual masking effects are computed from a set of annotated HDR images during our training process. Experimental results demonstrate that our proposed NR-IQA model can predict HDR image quality as accurately as state-of-the-art full-reference IQA methods.
在没有参考图像的情况下进行高动态范围 (HDR) 图像视觉质量评估具有挑战性。由于 HDR 显示设备成本高昂,这个研究课题尚未得到充分研究。然而,HDR 成像技术引起了越来越多的关注,因为它提供了更逼真的内容,与人类视觉系统感知的内容一致。我们提出了一种新的基于卷积神经网络的 HDR 数据无参考图像质量评估 (NR-IQA) 模型。该模型能够在没有任何参考的情况下检测到失真的 HDR 图像中的视觉伪影,同时考虑到感知掩蔽效应。分别测量误差和感知掩蔽值,然后通过混合函数进行处理,以预测失真图像的感知质量。我们的训练过程中,是从一组标注的 HDR 图像中计算感知掩蔽效应,而不是使用简单的刺激和心理物理实验。实验结果表明,我们提出的 NR-IQA 模型可以像最先进的全参考 IQA 方法一样准确地预测 HDR 图像质量。