Aslam Muhammad Azeem, Wei Xu, Khalid Hassan, Ahmed Nisar, Shuangtong Zhu, Liu Xin, Xu Yimei
School of Information Engineering, Xi'an Eurasia University, Xi'an, 710065, Shaanxi, China.
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
Sci Rep. 2024 Oct 29;14(1):26039. doi: 10.1038/s41598-024-77076-4.
This study introduces a novel Blind Image Quality Assessment (BIQA) approach leveraging a multi-stream spatial and channel attention model. Our method addresses challenges posed by diverse image content and distortions by integrating feature maps from two distinct backbones. Through spatial and channel attention mechanisms, our algorithm prioritizes regions of interest, enhancing its ability to capture crucial image details. Extensive evaluations on four benchmark datasets demonstrate superior performance compared to existing methods, closely aligning with human perceptual assessment. Our approach exhibits exceptional generalization capabilities on both authentic and synthetic distortion databases. Moreover, it demonstrates a distinctive focus on perceptual foreground information, enhancing its practical applicability. Thorough quantitative analyses underscore the algorithm's superior performance, establishing its dominance over existing methods.
本研究介绍了一种利用多流空间和通道注意力模型的新型盲图像质量评估(BIQA)方法。我们的方法通过整合来自两个不同主干的特征图,解决了由多样的图像内容和失真带来的挑战。通过空间和通道注意力机制,我们的算法对感兴趣区域进行优先处理,增强了其捕捉关键图像细节的能力。在四个基准数据集上的广泛评估表明,与现有方法相比,我们的方法具有卓越的性能,与人类感知评估高度吻合。我们的方法在真实和合成失真数据库上均展现出卓越的泛化能力。此外,它对感知前景信息有着独特的关注,增强了其实际适用性。全面的定量分析强调了该算法的卓越性能,确立了其相对于现有方法的优势。