Suppr超能文献

QualityNet:一种用于盲图像质量评估的具有空间和通道注意力的多流融合框架。

QualityNet: A multi-stream fusion framework with spatial and channel attention for blind image quality assessment.

作者信息

Aslam Muhammad Azeem, Wei Xu, Khalid Hassan, Ahmed Nisar, Shuangtong Zhu, Liu Xin, Xu Yimei

机构信息

School of Information Engineering, Xi'an Eurasia University, Xi'an, 710065, Shaanxi, China.

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.

出版信息

Sci Rep. 2024 Oct 29;14(1):26039. doi: 10.1038/s41598-024-77076-4.

Abstract

This study introduces a novel Blind Image Quality Assessment (BIQA) approach leveraging a multi-stream spatial and channel attention model. Our method addresses challenges posed by diverse image content and distortions by integrating feature maps from two distinct backbones. Through spatial and channel attention mechanisms, our algorithm prioritizes regions of interest, enhancing its ability to capture crucial image details. Extensive evaluations on four benchmark datasets demonstrate superior performance compared to existing methods, closely aligning with human perceptual assessment. Our approach exhibits exceptional generalization capabilities on both authentic and synthetic distortion databases. Moreover, it demonstrates a distinctive focus on perceptual foreground information, enhancing its practical applicability. Thorough quantitative analyses underscore the algorithm's superior performance, establishing its dominance over existing methods.

摘要

本研究介绍了一种利用多流空间和通道注意力模型的新型盲图像质量评估(BIQA)方法。我们的方法通过整合来自两个不同主干的特征图,解决了由多样的图像内容和失真带来的挑战。通过空间和通道注意力机制,我们的算法对感兴趣区域进行优先处理,增强了其捕捉关键图像细节的能力。在四个基准数据集上的广泛评估表明,与现有方法相比,我们的方法具有卓越的性能,与人类感知评估高度吻合。我们的方法在真实和合成失真数据库上均展现出卓越的泛化能力。此外,它对感知前景信息有着独特的关注,增强了其实际适用性。全面的定量分析强调了该算法的卓越性能,确立了其相对于现有方法的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d6/11522308/9917d6bb612f/41598_2024_77076_Fig1_HTML.jpg

相似文献

2
A feature-enriched completely blind image quality evaluator.
IEEE Trans Image Process. 2015 Aug;24(8):2579-91. doi: 10.1109/TIP.2015.2426416. Epub 2015 Apr 24.
3
dipIQ: Blind Image Quality Assessment by Learning-to-Rank Discriminable Image Pairs.
IEEE Trans Image Process. 2017 Aug;26(8):3951-3964. doi: 10.1109/TIP.2017.2708503. Epub 2017 May 26.
4
Learning to rank for blind image quality assessment.
IEEE Trans Neural Netw Learn Syst. 2015 Oct;26(10):2275-90. doi: 10.1109/TNNLS.2014.2377181. Epub 2015 Jan 19.
5
A Multiscale Approach to Deep Blind Image Quality Assessment.
IEEE Trans Image Process. 2023;32:1656-1667. doi: 10.1109/TIP.2023.3245991. Epub 2023 Mar 6.
6
Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and Wild.
IEEE Trans Image Process. 2021;30:3474-3486. doi: 10.1109/TIP.2021.3061932. Epub 2021 Mar 9.
7
Dual-Stream Complex-Valued Convolutional Network for Authentic Dehazed Image Quality Assessment.
IEEE Trans Image Process. 2024;33:466-478. doi: 10.1109/TIP.2023.3343029. Epub 2024 Jan 5.
8
G2NPAN: GAN-guided nuance perceptual attention network for multimodal medical fusion image quality assessment.
Front Neurosci. 2024 May 13;18:1415679. doi: 10.3389/fnins.2024.1415679. eCollection 2024.
9
Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features.
IEEE Trans Image Process. 2014 Nov;23(11):4850-62. doi: 10.1109/TIP.2014.2355716. Epub 2014 Sep 8.

本文引用的文献

1
Efficient anomaly recognition using surveillance videos.
PeerJ Comput Sci. 2022 Oct 14;8:e1117. doi: 10.7717/peerj-cs.1117. eCollection 2022.
2
No-Reference Quality Assessment of Tone-Mapped HDR Pictures.
IEEE Trans Image Process. 2017 Jun;26(6):2957-2971. doi: 10.1109/TIP.2017.2685941. Epub 2017 Mar 22.
4
Massive Online Crowdsourced Study of Subjective and Objective Picture Quality.
IEEE Trans Image Process. 2016 Jan;25(1):372-87. doi: 10.1109/TIP.2015.2500021. Epub 2015 Nov 11.
5
Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features.
IEEE Trans Image Process. 2014 Nov;23(11):4850-62. doi: 10.1109/TIP.2014.2355716. Epub 2014 Sep 8.
6
No-reference image quality assessment in the spatial domain.
IEEE Trans Image Process. 2012 Dec;21(12):4695-708. doi: 10.1109/TIP.2012.2214050. Epub 2012 Aug 17.
7
Blind image quality assessment: a natural scene statistics approach in the DCT domain.
IEEE Trans Image Process. 2012 Aug;21(8):3339-52. doi: 10.1109/TIP.2012.2191563. Epub 2012 Mar 21.
8
Blind image quality assessment: from natural scene statistics to perceptual quality.
IEEE Trans Image Process. 2011 Dec;20(12):3350-64. doi: 10.1109/TIP.2011.2147325. Epub 2011 Apr 25.
9
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验