Suppr超能文献

利用脑灰质体积对阅读理解能力进行个体化预测。

Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume.

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.

Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.

出版信息

Cereb Cortex. 2018 May 1;28(5):1656-1672. doi: 10.1093/cercor/bhx061.

Abstract

Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.

摘要

阅读理解是学习的一项关键阅读技能,包含两个关键组成部分:阅读解码和语言理解。目前对于这两个阅读理解成分的神经机制理解不足,并且神经解剖学特征是否以及如何可以用于预测这两种技能在很大程度上仍未得到探索。在本研究中,我们分析了来自人类连接组计划(HCP)数据集的一个大样本,并使用全脑灰质体积特征成功为这两种技能构建了多元预测模型。结果表明,这些模型有效地捕获了这两种技能的个体差异,并能够显著预测未观察个体的阅读理解的这些成分。使用 HCP 队列和另一个儿童独立队列进行的严格交叉验证表明了模型的通用性。对有助于技能预测的灰质区域进行了鉴定,这些区域包括了涵盖假定的阅读、小脑和皮质下系统的广泛区域。有趣的是,在预测模型中存在性别差异,女性特有的模型高估了男性的能力。此外,女性特有的和男性特有的模型所识别的有助于模型的灰质区域存在相当大的差异,支持了阅读理解的性别依赖的神经解剖学基础。

相似文献

1
Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume.
Cereb Cortex. 2018 May 1;28(5):1656-1672. doi: 10.1093/cercor/bhx061.
2
Brain basis of cognitive resilience: Prefrontal cortex predicts better reading comprehension in relation to decoding.
PLoS One. 2018 Jun 14;13(6):e0198791. doi: 10.1371/journal.pone.0198791. eCollection 2018.
3
Anomalous gray matter patterns in specific reading comprehension deficit are independent of dyslexia.
Ann Dyslexia. 2016 Oct;66(3):256-274. doi: 10.1007/s11881-015-0114-y. Epub 2016 Jun 20.
4
Prediction of trust propensity from intrinsic brain morphology and functional connectome.
Hum Brain Mapp. 2021 Jan;42(1):175-191. doi: 10.1002/hbm.25215. Epub 2020 Oct 1.
5
Individual differences in white matter anatomy predict dissociable components of reading skill in adults.
Neuroimage. 2014 Aug 1;96:261-75. doi: 10.1016/j.neuroimage.2014.03.069. Epub 2014 Apr 2.
6
Reading skill is related to individual differences in brain structure in college students.
Hum Brain Mapp. 2011 Aug;32(8):1194-205. doi: 10.1002/hbm.21101. Epub 2011 Apr 26.
8
Gray-matter structural variability in the human cerebellum: Lobule-specific differences across sex and hemisphere.
Neuroimage. 2018 Apr 15;170:164-173. doi: 10.1016/j.neuroimage.2017.04.066. Epub 2017 Apr 28.
9
Decoding the neuroanatomical basis of reading ability: a multivoxel morphometric study.
J Neurosci. 2013 Jul 31;33(31):12835-43. doi: 10.1523/JNEUROSCI.0449-13.2013.
10
Distinct neural substrates of individual differences in components of reading comprehension in adults with or without dyslexia.
Neuroimage. 2021 Feb 1;226:117570. doi: 10.1016/j.neuroimage.2020.117570. Epub 2020 Nov 19.

引用本文的文献

2
From brain to education through machine learning: Predicting literacy and numeracy skills from neuroimaging data.
Imaging Neurosci (Camb). 2024 Jul 3;2. doi: 10.1162/imag_a_00219. eCollection 2024.
3
Individualized prediction of future cognition based on developmental changes in cortical anatomy.
Neuroimage Rep. 2022 Sep 2;2(4):100127. doi: 10.1016/j.ynirp.2022.100127. eCollection 2022 Dec.
7
Connectome-based prediction of future episodic memory performance for individual amnestic mild cognitive impairment patients.
Brain Commun. 2025 Feb 17;7(1):fcaf033. doi: 10.1093/braincomms/fcaf033. eCollection 2025.
8
Altered hippocampal effective connectivity predicts BMI and food approach behavior in children with obesity.
Int J Clin Health Psychol. 2025 Jan-Mar;25(1):100541. doi: 10.1016/j.ijchp.2024.100541. Epub 2025 Jan 10.
10
Network and state specificity in connectivity-based predictions of individual behavior.
Hum Brain Mapp. 2024 Jun 1;45(8):e26753. doi: 10.1002/hbm.26753.

本文引用的文献

2
Building a Science of Individual Differences from fMRI.
Trends Cogn Sci. 2016 Jun;20(6):425-443. doi: 10.1016/j.tics.2016.03.014. Epub 2016 Apr 30.
3
Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies.
Biol Psychiatry. 2016 Oct 1;80(7):552-61. doi: 10.1016/j.biopsych.2015.12.023. Epub 2016 Jan 6.
4
The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis.
Neuroimage. 2016 May 15;132:32-42. doi: 10.1016/j.neuroimage.2016.02.033. Epub 2016 Feb 17.
5
Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.
Hum Brain Mapp. 2016 Apr;37(4):1443-58. doi: 10.1002/hbm.23112. Epub 2016 Jan 20.
6
A neuromarker of sustained attention from whole-brain functional connectivity.
Nat Neurosci. 2016 Jan;19(1):165-71. doi: 10.1038/nn.4179. Epub 2015 Nov 23.
7
Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.
Nat Neurosci. 2015 Nov;18(11):1664-71. doi: 10.1038/nn.4135. Epub 2015 Oct 12.
10
Disconnection of network hubs and cognitive impairment after traumatic brain injury.
Brain. 2015 Jun;138(Pt 6):1696-709. doi: 10.1093/brain/awv075. Epub 2015 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验