Zhou Shuo, Luo Junhao, Jiang Yaya, Wang Haolin, Lu Haiping, Gong Gaolang
School of Computer Science, University of Sheffield, S1 4DP, Sheffield, UK.
Centre for Machine Intelligence, University of Sheffield, S1 3JD, Sheffield, UK.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf082.
Lateralization is the asymmetry in function and cognition between the brain hemispheres, with notable sex differences. Conventional neuroscience studies on lateralization use univariate statistical comparisons between male and female groups, with limited and ineffective validation for group specificity. This article proposes to model sex differences in brain functional network lateralization as a dual-classification problem: first-order classification of left versus right hemispheres and second-order classification of male versus female models. To capture sex-specific patterns, we developed an interpretable group-specific discriminant analysis (GSDA) for first-order classification, followed by logistic regression for second-order classification.
Evaluations on 2 large-scale neuroimaging datasets show GSDA's effectiveness in learning sex-specific patterns, significantly improving model group specificity over baseline methods. Major sex differences were identified in the strength of lateralization and interaction patterns within and between lobes.
The GSDA-based analysis challenges the conventional approach to investigating group-specific lateralization and indicates that previous findings on sex-specific lateralization will need revisits and revalidation. This method is generic and can be adapted for other group-specific analyses, such as treatment-specific or disease-specific studies.
脑侧化是大脑半球在功能和认知上的不对称,存在显著的性别差异。传统的关于脑侧化的神经科学研究使用男性和女性群体之间的单变量统计比较,对群体特异性的验证有限且无效。本文提出将脑功能网络侧化中的性别差异建模为一个二元分类问题:左半球与右半球的一阶分类以及男性模型与女性模型的二阶分类。为了捕捉特定性别的模式,我们开发了一种可解释的群体特异性判别分析(GSDA)用于一阶分类,随后使用逻辑回归进行二阶分类。
对两个大规模神经影像数据集的评估表明,GSDA在学习特定性别的模式方面是有效的,与基线方法相比显著提高了模型群体特异性。在脑叶内和脑叶间的侧化强度和交互模式中发现了主要的性别差异。
基于GSDA的分析对研究群体特异性脑侧化的传统方法提出了挑战,并表明之前关于特定性别脑侧化的研究结果需要重新审视和验证。这种方法具有通用性,可适用于其他群体特异性分析,如治疗特异性或疾病特异性研究。