Kanki Yasuharu, Nakaki Ryo, Shimamura Teppei, Matsunaga Taichi, Yamamizu Kohei, Katayama Shiori, Suehiro Jun-Ichi, Osawa Tsuyoshi, Aburatani Hiroyuki, Kodama Tatsuhiko, Wada Youichiro, Yamashita Jun K, Minami Takashi
Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan.
Division of Vascular Biology, RCAST, The University of Tokyo, Tokyo 153-8904, Japan.
Nucleic Acids Res. 2017 May 5;45(8):4344-4358. doi: 10.1093/nar/gkx159.
Although studies of the differentiation from mouse embryonic stem (ES) cells to vascular endothelial cells (ECs) provide an excellent model for investigating the molecular mechanisms underlying vascular development, temporal dynamics of gene expression and chromatin modifications have not been well studied. Herein, using transcriptomic and epigenomic analyses based on H3K4me3 and H3K27me3 modifications at a genome-wide scale, we analysed the EC differentiation steps from ES cells and crucial epigenetic modifications unique to ECs. We determined that Gata2, Fli1, Sox7 and Sox18 are master regulators of EC that are induced following expression of the haemangioblast commitment pioneer factor, Etv2. These master regulator gene loci were repressed by H3K27me3 throughout the mesoderm period but rapidly transitioned to histone modification switching from H3K27me3 to H3K4me3 after treatment with vascular endothelial growth factor. SiRNA knockdown experiments indicated that these regulators are indispensable not only for proper EC differentiation but also for blocking the commitment to other closely aligned lineages. Collectively, our detailed epigenetic analysis may provide an advanced model for understanding temporal regulation of chromatin signatures and resulting gene expression profiles during EC commitment. These studies may inform the future development of methods to stimulate the vascular endothelium for regenerative medicine.
尽管从小鼠胚胎干细胞(ES细胞)向血管内皮细胞(ECs)分化的研究为探究血管发育的分子机制提供了一个极佳模型,但基因表达和染色质修饰的时间动态变化尚未得到充分研究。在此,我们基于全基因组范围内的H3K4me3和H3K27me3修饰进行转录组学和表观基因组学分析,剖析了ES细胞向ECs的分化步骤以及ECs特有的关键表观遗传修饰。我们确定,Gata2、Fli1、Sox7和Sox18是EC的主要调控因子,它们在成血管细胞定向先驱因子Etv2表达后被诱导产生。在整个中胚层时期,这些主要调控基因位点都被H3K27me3抑制,但在用血管内皮生长因子处理后,迅速转变为从H3K27me3到H3K4me3的组蛋白修饰转换。小干扰RNA敲低实验表明,这些调控因子不仅对EC的正常分化不可或缺,而且对于阻止向其他紧密相关谱系的定向分化也至关重要。总体而言,我们详细的表观遗传学分析可能为理解EC定向过程中染色质特征的时间调控以及由此产生的基因表达谱提供一个先进模型。这些研究可能为再生医学中刺激血管内皮细胞的方法的未来发展提供参考。