Kol Matthijs, Panatala Radhakrishnan, Nordmann Mirjana, Swart Leoni, van Suijlekom Leonie, Cabukusta Birol, Hilderink Angelika, Grabietz Tanja, Mina John G M, Somerharju Pentti, Korneev Sergei, Tafesse Fikadu G, Holthuis Joost C M
Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
Membrane Biochemistry and Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands.
J Lipid Res. 2017 May;58(5):962-973. doi: 10.1194/jlr.M076133. Epub 2017 Mar 23.
SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS)1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog, ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, SMS-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate the head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with Glu permitting SMS-catalyzed CPE production and Asp confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.
鞘磷脂(SM)是哺乳动物细胞膜的基本组成成分,对维持膜的机械稳定性、信号传导及分选功能具有重要作用。其合成过程涉及磷酸胆碱从磷脂酰胆碱转移至神经酰胺上,该反应由高尔基体中的鞘磷脂合酶(SMS)1及质膜上的SMS2催化。哺乳动物细胞也能合成痕量的鞘磷脂类似物——神经酰胺磷酸乙醇胺(CPE),但其生理意义尚不清楚。此前研究表明,SMS2是一种双功能酶,可同时产生SM和CPE,而一种与之密切相关的酶——SMS相关蛋白(SMSr)/SAMD8在内质网中作为单功能CPE合酶发挥作用。通过对在特定脂质环境中表达的酶进行结构域交换和定点诱变,我们在此确定了介导SMS家族成员头部基团选择性的结构决定因素。值得注意的是,第三个胞外环中与催化组氨酸相邻的单个残基对酶的特异性有深远影响,谷氨酸(Glu)可使SMS催化产生CPE,而天冬氨酸(Asp)则使该酶只能产生SM。将胞外环残基与SMSr进行交换足以将SMS1转变为主要产生CPE的合酶。这使我们能够构建出以CPE而非SM作为主要磷酸鞘脂的哺乳动物细胞,并提供了一个阐释SMS酶之间催化特异性分子相互作用的模型。