Nanoelectronic Devices Laboratory (NanoLab), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Solar Energy and Building Physics Laboratory (LESO-PB), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Sci Rep. 2017 Mar 23;7(1):355. doi: 10.1038/s41598-017-00359-6.
Steep-slope transistors allow to scale down the supply voltage and the energy per computed bit of information as compared to conventional field-effect transistors (FETs), due to their sub-60 mV/decade subthreshold swing at room temperature. Currently pursued approaches to achieve such a subthermionic subthreshold swing consist in alternative carrier injection mechanisms, like quantum mechanical band-to-band tunneling (BTBT) in Tunnel FETs or abrupt phase-change in metal-insulator transition (MIT) devices. The strengths of the BTBT and MIT have been combined in a hybrid device architecture called phase-change tunnel FET (PC-TFET), in which the abrupt MIT in vanadium dioxide (VO) lowers the subthreshold swing of strained-silicon nanowire TFETs. In this work, we demonstrate that the principle underlying the low swing in the PC-TFET relates to a sub-unity body factor achieved by an internal differential gate voltage amplification. We study the effect of temperature on the switching ratio and the swing of the PC-TFET, reporting values as low as 4.0 mV/decade at 25 °C, 7.8 mV/decade at 45 °C. We discuss how the unique characteristics of the PC-TFET open new perspectives, beyond FETs and other steep-slope transistors, for low power electronics, analog circuits and neuromorphic computing.
陡斜率晶体管允许与传统场效应晶体管 (FET) 相比,降低电源电压和每个计算比特的能量,因为它们在室温下具有低于 60mV/decade 的亚阈值摆幅。目前实现这种亚热离子亚阈值摆幅的方法包括替代载流子注入机制,例如隧道晶体管中的量子力学带对带隧穿 (BTBT) 或金属-绝缘体相变 (MIT) 器件中的急剧相变。BTBT 和 MIT 的优势已经结合在一种称为相变隧道晶体管 (PC-TFET) 的混合器件架构中,其中二氧化钒 (VO) 的急剧 MIT 降低了应变硅纳米线 TFET 的亚阈值摆幅。在这项工作中,我们证明了 PC-TFET 中低摆幅的原理与通过内部差分栅极电压放大实现的小于 1 的体因子有关。我们研究了温度对 PC-TFET 的开关比和摆幅的影响,在 25°C 时报告的低至 4.0mV/decade,在 45°C 时报告的低至 7.8mV/decade。我们讨论了 PC-TFET 的独特特性如何为低功耗电子、模拟电路和神经形态计算开辟了超越 FET 和其他陡斜率晶体管的新视角。