Liu Bo, Sun Lirong, Ma Liya, Hao Fu-Shun
State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University Jinming Campus, Kaifeng, 475004, China.
Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
Plant Cell Rep. 2017 Jun;36(6):947-957. doi: 10.1007/s00299-017-2128-x. Epub 2017 Mar 23.
Both AtrbohD and AtrbohF promote the increases in activities of ADH, PDC, LDH, and Ca levels, and induce the expression of multiple hypoxia response genes, thus improving Arabidopsis adaptation to oxygen deficiency. NADPH oxidase AtrbohD and AtrbohF cooperatively play key roles in regulation of growth and stress signaling in Arabidopsis. However, reports on AtrbohD and AtrbohF functioning together in hypoxia signaling are scarce, and the underlying mechanisms remain elusive. Here, we show that the double null mutant atrbohD/F is more sensitive to oxygen deprivation compared with wild type (WT) and the single mutant atrbohD and atrbohF. Under oxygen deficiency, enhancements of the transcripts of alcohol dehydrogenase 1 (ADH1) and pyruvate decarboxylase 1 (PDC1) and the activities of ADH, PDC and lactate dehydrogenase in WT are clearly reduced in the single mutants, and more strongly reduced in the double mutant. Moreover, increases in the production of ATP, HO and Ca in WT are significantly arrested in atrbohD, atrbohF, and especially in atrbohD/F. Hypoxia-promoted rise in the expression of some hypoxic responsive genes is also inhibited in atrbohD/F relative to WT, atrbohD and atrbohF. These genes include ethylene response factor 73, lactate dehydrogenase, MYB transcription factor 2, sucrose synthase 1 (SUS1), SUS4, heat stress transcription factor A2 and heat-shock protein 18.2. These results suggest that both AtrbohD and AtrbohF are essential for mediating hypoxia signaling. HO derived from AtrbohD and AtrbohF triggers the Ca increase and induces the expression of multiple hypoxia response genes, thus improving Arabidopsis tolerance to low-oxygen stress. These findings provide new insights into the mechanisms of AtrbohF in regulating the responses to oxygen deprivation in Arabidopsis.
呼吸爆发氧化酶D(AtrbohD)和呼吸爆发氧化酶F(AtrbohF)均能促进乙醇脱氢酶(ADH)、丙酮酸脱羧酶(PDC)、乳酸脱氢酶(LDH)的活性增加以及钙离子水平升高,并诱导多个缺氧反应基因的表达,从而提高拟南芥对缺氧的适应性。NADPH氧化酶AtrbohD和AtrbohF在拟南芥生长和胁迫信号调控中共同发挥关键作用。然而,关于AtrbohD和AtrbohF在缺氧信号传导中共同作用的报道较少,其潜在机制仍不清楚。在此,我们表明,与野生型(WT)以及单突变体AtrbohD和AtrbohF相比,双缺失突变体AtrbohD/F对缺氧更为敏感。在缺氧条件下,野生型中乙醇脱氢酶1(ADH1)和丙酮酸脱羧酶1(PDC1)的转录本增加以及ADH、PDC和乳酸脱氢酶的活性增强,在单突变体中明显降低,而在双突变体中降低得更显著。此外,野生型中ATP、过氧化氢(HO)和钙离子的产生增加在AtrbohD、AtrbohF中,尤其是在AtrbohD/F中显著受到抑制。相对于野生型、AtrbohD和AtrbohF,缺氧促进的一些缺氧反应基因的表达上调在AtrbohD/F中也受到抑制。这些基因包括乙烯反应因子73、乳酸脱氢酶、MYB转录因子2、蔗糖合酶1(SUS1)、SUS4、热应激转录因子A2和热休克蛋白18.2。这些结果表明,AtrbohD和AtrbohF对于介导缺氧信号传导都是必不可少的。源自AtrbohD和AtrbohF的HO触发钙离子增加并诱导多个缺氧反应基因的表达,从而提高拟南芥对低氧胁迫的耐受性。这些发现为AtrbohF调控拟南芥对缺氧反应的机制提供了新的见解。