Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Sci Rep. 2017 Mar 24;7:44379. doi: 10.1038/srep44379.
Boundary-engineering in nanostructures has the potential to dramatically impact the development of materials for high- efficiency conversion of thermal energy directly into electricity. In particular, nanostructuring of semiconductors can lead to strong suppression of heat transport with little degradation of electrical conductivity. Although this combination of material properties is promising for thermoelectric materials, it remains largely unexplored. In this work, we introduce a novel concept, the directional phonon suppression function, to unravel boundary-dominated heat transport in unprecedented detail. Using a combination of density functional theory and the Boltzmann transport equation, we compute this quantity for nanoporous silicon materials. We first compute the thermal conductivity for the case with aligned circular pores, confirming a significant thermal transport degradation with respect to the bulk. Then, by analyzing the information on the directionality of phonon suppression in this system, we identify a new structure of rectangular pores with the same porosity that enables a four-fold decrease in thermal transport with respect to the circular pores. Our results illustrate the utility of the directional phonon suppression function, enabling new avenues for systematic thermal conductivity minimization and potentially accelerating the engineering of next-generation thermoelectric devices.
纳米结构中的边界工程有可能极大地推动高效热能直接转化为电能的材料的发展。特别是,半导体的纳米结构化可以导致热输运的强烈抑制,而电导率的降解很小。尽管这种材料性能的组合对于热电材料很有前景,但它在很大程度上仍未得到探索。在这项工作中,我们引入了一个新的概念,即定向声子抑制函数,以以前所未有的细节揭示边界主导的热输运。我们使用密度泛函理论和玻尔兹曼输运方程的组合,计算了纳米多孔硅材料的这种数量。我们首先计算了具有对齐的圆形孔的情况下的热导率,证实了与体相相比热输运的显著降解。然后,通过分析该系统中声子抑制方向的信息,我们确定了具有相同孔隙率的矩形孔的新结构,这使得相对于圆形孔,热输运降低了四倍。我们的结果说明了定向声子抑制函数的实用性,为系统地最小化热导率开辟了新的途径,并可能加速下一代热电设备的工程设计。