Suppr超能文献

基于通量最小化原理从基因表达数据预测代谢通量分布

Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.

作者信息

Song Hyun-Seob, Reifman Jaques, Wallqvist Anders

机构信息

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America.

出版信息

PLoS One. 2014 Nov 14;9(11):e112524. doi: 10.1371/journal.pone.0112524. eCollection 2014.

Abstract

Prediction of possible flux distributions in a metabolic network provides detailed phenotypic information that links metabolism to cellular physiology. To estimate metabolic steady-state fluxes, the most common approach is to solve a set of macroscopic mass balance equations subjected to stoichiometric constraints while attempting to optimize an assumed optimal objective function. This assumption is justifiable in specific cases but may be invalid when tested across different conditions, cell populations, or other organisms. With an aim to providing a more consistent and reliable prediction of flux distributions over a wide range of conditions, in this article we propose a framework that uses the flux minimization principle to predict active metabolic pathways from mRNA expression data. The proposed algorithm minimizes a weighted sum of flux magnitudes, while biomass production can be bounded to fit an ample range from very low to very high values according to the analyzed context. We have formulated the flux weights as a function of the corresponding enzyme reaction's gene expression value, enabling the creation of context-specific fluxes based on a generic metabolic network. In case studies of wild-type Saccharomyces cerevisiae, and wild-type and mutant Escherichia coli strains, our method achieved high prediction accuracy, as gauged by correlation coefficients and sums of squared error, with respect to the experimentally measured values. In contrast to other approaches, our method was able to provide quantitative predictions for both model organisms under a variety of conditions. Our approach requires no prior knowledge or assumption of a context-specific metabolic functionality and does not require trial-and-error parameter adjustments. Thus, our framework is of general applicability for modeling the transcription-dependent metabolism of bacteria and yeasts.

摘要

预测代谢网络中可能的通量分布可提供详细的表型信息,将代谢与细胞生理学联系起来。为了估计代谢稳态通量,最常见的方法是求解一组受化学计量约束的宏观质量平衡方程,同时尝试优化一个假定的最优目标函数。这种假设在特定情况下是合理的,但在跨不同条件、细胞群体或其他生物体进行测试时可能无效。为了在广泛的条件下提供更一致、可靠的通量分布预测,在本文中,我们提出了一个框架,该框架使用通量最小化原理从mRNA表达数据预测活跃的代谢途径。所提出的算法最小化通量大小的加权和,同时可以根据分析的背景将生物量生产限制在从非常低到非常高的值的充足范围内。我们将通量权重表示为相应酶反应的基因表达值的函数,从而能够基于通用代谢网络创建特定背景的通量。在野生型酿酒酵母以及野生型和突变型大肠杆菌菌株的案例研究中,我们的方法相对于实验测量值,通过相关系数和均方误差之和衡量,实现了高预测准确性。与其他方法相比,我们的方法能够在各种条件下为两种模式生物提供定量预测。我们的方法不需要特定背景的代谢功能的先验知识或假设,也不需要反复试验的参数调整。因此,我们的框架对于模拟细菌和酵母的转录依赖性代谢具有普遍适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9c/4232356/0991543cbe5f/pone.0112524.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验