MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
Nat Chem. 2017 Apr;9(4):325-332. doi: 10.1038/nchem.2739. Epub 2017 Mar 6.
The emergence of functional interactions between nucleic acids and polypeptides was a key transition in the origin of life and remains at the heart of all biology. However, how and why simple non-coded peptides could have become critical for RNA function is unclear. Here, we show that putative ancient peptide segments from the cores of both ribosomal subunits enhance RNA polymerase ribozyme (RPR) function, as do derived homopolymeric peptides comprising lysine or the non-proteinogenic lysine analogues ornithine or, to a lesser extent, diaminobutyric acid, irrespective of chirality or chiral purity. Lysine decapeptides enhance RPR function by promoting holoenzyme assembly through primer-template docking, accelerate RPR evolution, and allow RPR-catalysed RNA synthesis at near physiological (≥1 mM) Mg concentrations, enabling templated RNA synthesis within membranous protocells. Our results outline how compositionally simple, mixed-chirality peptides may have augmented the functional potential of early RNAs and promoted the emergence of the first protocells.
核酸和多肽之间功能相互作用的出现是生命起源的关键转变,并且仍然是所有生物学的核心。然而,简单的非编码肽如何以及为什么会对 RNA 功能变得至关重要尚不清楚。在这里,我们表明核糖体亚基核心中的假定古老肽段增强了 RNA 聚合酶核酶 (RPR) 的功能,由赖氨酸或非蛋白质类似物鸟氨酸或在较小程度上由二氨基丁酸组成的衍生均聚肽也增强了 RPR 功能,而与手性或手性纯度无关。赖氨酸十肽通过通过引物-模板对接促进全酶组装来增强 RPR 功能,加速 RPR 进化,并允许在接近生理(≥1mM)Mg 浓度下进行 RPR 催化的 RNA 合成,从而在膜原代细胞内进行模板化 RNA 合成。我们的结果概述了组成简单、混合手性的肽如何增强早期 RNA 的功能潜力并促进第一批原代细胞的出现。