Suppr超能文献

钝化的 InGaAs/InP 纳米柱中的超低表面复合速率。

Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars.

机构信息

Institute for Photonic Integration, ‡Photonic Integration, Department of Electrical Engineering, §Photonics and Semiconductor Nanophysics, Department of Applied Physics, ∥Plasma and Materials Processing, Department of Applied Physics, and ⊥NanoLab@TU/e Eindhoven University of Technology , Postbus 513, 5600 MB Eindhoven, The Netherlands.

出版信息

Nano Lett. 2017 Apr 12;17(4):2627-2633. doi: 10.1021/acs.nanolett.7b00430. Epub 2017 Mar 29.

Abstract

The III-V semiconductor InGaAs is a key material for photonics because it provides optical emission and absorption in the 1.55 μm telecommunication wavelength window. However, InGaAs suffers from pronounced nonradiative effects associated with its surface states, which affect the performance of nanophotonic devices for optical interconnects, namely nanolasers and nanodetectors. This work reports the strong suppression of surface recombination of undoped InGaAs/InP nanostructured semiconductor pillars using a combination of ammonium sulfide, (NH)S, chemical treatment and silicon oxide, SiO, coating. An 80-fold enhancement in the photoluminescence (PL) intensity of submicrometer pillars at a wavelength of 1550 nm is observed as compared with the unpassivated nanopillars. The PL decay time of ∼0.3 μm wide square nanopillars is dramatically increased from ∼100 ps to ∼25 ns after sulfur treatment and SiO coating. The extremely long lifetimes reported here, to our knowledge the highest reported to date for undoped InGaAs nanostructures, are associated with a record-low surface recombination velocity of ∼260 cm/s. We also conclusively show that the SiO capping layer plays an active role in the passivation. These results are crucial for the future development of high-performance nanoscale optoelectronic devices for applications in energy-efficient data optical links, single-photon sensing, and photovoltaics.

摘要

III-V 族半导体 InGaAs 是光子学的关键材料,因为它在 1.55 μm 电信波长窗口提供光发射和吸收。然而,InGaAs 受到与其表面态相关的显著非辐射效应的影响,这会影响用于光互连的纳米光子器件的性能,即纳米激光器和纳米探测器。这项工作报告了使用硫化铵((NH)S)化学处理和氧化硅(SiO)涂层的组合,对掺镓砷化铟/磷化铟纳米结构半导体柱的未掺杂表面复合的强烈抑制。与未钝化的纳米柱相比,在 1550nm 波长下观察到亚微米柱的光致发光(PL)强度增强了 80 倍。经过硫处理和 SiO 涂层后,约 0.3μm 宽的正方形纳米柱的 PL 衰减时间从约 100 ps 急剧增加到约 25 ns。据我们所知,这里报道的极长寿命是迄今为止报道的未掺杂 InGaAs 纳米结构中最高的,与记录低的表面复合速度(约 260 cm/s)有关。我们还明确表明,SiO 覆盖层在钝化中起着积极的作用。这些结果对于未来开发用于节能数据光链路、单光子传感和光伏的高性能纳米级光电设备至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc32/5391499/ba2af132c358/nl-2017-00430s_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验