Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
Sci Rep. 2017 Mar 24;7(1):391. doi: 10.1038/s41598-017-00149-0.
USP9X, is highly expressed in neural progenitors and, essential for neural development in mice. In humans, mutations in USP9X are associated with neurodevelopmental disorders. To understand USP9X's role in neural progenitors, we studied the effects of altering its expression in both the human neural progenitor cell line, ReNcell VM, as well as neural stem and progenitor cells derived from Nestin-cre conditionally deleted Usp9x mice. Decreasing USP9X resulted in ReNcell VM cells arresting in G0 cell cycle phase, with a concomitant decrease in mTORC1 signalling, a major regulator of G0/G1 cell cycle progression. Decreased mTORC1 signalling was also observed in Usp9x-null neurospheres and embryonic mouse brains. Further analyses revealed, (i) the canonical mTORC1 protein, RAPTOR, physically associates with Usp9x in embryonic brains, (ii) RAPTOR protein level is directly proportional to USP9X, in both loss- and gain-of-function experiments in cultured cells and, (iii) USP9X deubiquitlyating activity opposes the proteasomal degradation of RAPTOR. EdU incorporation assays confirmed Usp9x maintains the proliferation of neural progenitors similar to Raptor-null and rapamycin-treated neurospheres. Interestingly, loss of Usp9x increased the number of sphere-forming cells consistent with enhanced neural stem cell self-renewal. To our knowledge, USP9X is the first deubiquitylating enzyme shown to stabilize RAPTOR.
USP9X 在神经祖细胞中高度表达,对于小鼠的神经发育至关重要。在人类中,USP9X 的突变与神经发育障碍有关。为了了解 USP9X 在神经祖细胞中的作用,我们研究了改变其在人神经祖细胞系 ReNcell VM 中的表达以及从 Nestin-cre 条件性删除 Usp9x 小鼠中衍生的神经干细胞和祖细胞中的表达对其的影响。降低 USP9X 导致 ReNcell VM 细胞停滞在 G0 细胞周期阶段,同时 mTORC1 信号通路减少,mTORC1 信号通路是 G0/G1 细胞周期进程的主要调节因子。在 Usp9x 缺失的神经球和胚胎小鼠大脑中也观察到 mTORC1 信号减少。进一步的分析表明,(i)经典的 mTORC1 蛋白 RAPTOR 在胚胎大脑中与 Usp9x 物理结合,(ii)在培养细胞中的丧失和获得功能实验中,RAPTOR 蛋白水平与 USP9X 直接成正比,(iii)USP9X 的去泛素化活性与 RAPTOR 的蛋白酶体降解作用相反。EdU 掺入实验证实 Usp9x 维持神经祖细胞的增殖与 Raptor 缺失和 rapamycin 处理的神经球相似。有趣的是,Usp9x 的缺失增加了球体形成细胞的数量,这与增强的神经干细胞自我更新一致。据我们所知,USP9X 是第一个被证明稳定 RAPTOR 的去泛素化酶。