Suppr超能文献

通过膜辅助相分离法制备载药 PLGA-PEG 纳米粒。

Preparation of Drug-Loaded PLGA-PEG Nanoparticles by Membrane-Assisted Nanoprecipitation.

机构信息

Department of Chemical & Environmental Engineering & Nanoscience Institute of Aragon (INA),, University of Zaragoza,, Mariano Esquillor edif. I+D,, 50018, Zaragoza, Spain.

Department of Environmental and Chemical Engineering, University of Calabria (DIATIC-UNICAL),, via P. Bucci Cubo 45a, 87036, Rende, CS, Italy.

出版信息

Pharm Res. 2017 Jun;34(6):1296-1308. doi: 10.1007/s11095-017-2146-y. Epub 2017 Mar 24.

Abstract

PURPOSE

The aim of this work is to develop a scalable continuous system suitable for the formulation of polymeric nanoparticles using membrane-assisted nanoprecipitation. One of the hurdles to overcome in the use of nanostructured materials as drug delivery vectors is their availability at industrial scale. Innovation in process technology is required to translate laboratory production into mass production while preserving their desired nanoscale characteristics.

METHODS

Membrane-assisted nanoprecipitation has been used for the production of Poly[(D,L lactide-co-glycolide)-co-poly ethylene glycol] diblock) (PLGA-PEG) nanoparticles using a pulsed back-and-forward flow arrangement. Tubular Shirasu porous glass membranes (SPG) with pore diameters of 1 and 0.2 μm were used to control the mixing process during the nanoprecipitation reaction.

RESULTS

The size of the resulting PLGA-PEG nanoparticles could be readily tuned in the range from 250 to 400 nm with high homogeneity (PDI lower than 0.2) by controlling the dispersed phase volume/continuous phase volume ratio. Dexamethasone was successfully encapsulated in a continuous process, achieving an encapsulation efficiency and drug loading efficiency of 50% and 5%, respectively. The dexamethasone was released from the nanoparticles following Fickian kinetics.

CONCLUSIONS

The method allowed to produce polymeric nanoparticles for drug delivery with a high productivity, reproducibility and easy scalability.

摘要

目的

本工作旨在开发适用于膜辅助沉淀法制备聚合物纳米粒子的可扩展连续体系。将纳米结构化材料用作药物传递载体的一个障碍是它们在工业规模上的可用性。需要创新工艺技术,将实验室生产转化为大规模生产,同时保持其所需的纳米级特性。

方法

采用脉冲正反流动装置,通过膜辅助沉淀法制备聚[(D,L 丙交酯-共-乙交酯)-共-聚乙二醇]二嵌段(PLGA-PEG)纳米粒子。使用孔径为 1 和 0.2μm 的管状 Shirasu 多孔玻璃膜(SPG)来控制纳米沉淀反应过程中的混合过程。

结果

通过控制分散相体积/连续相体积比,可以很容易地将所得 PLGA-PEG 纳米粒子的粒径在 250 至 400nm 范围内进行调节,且具有很高的均匀性(PDI 低于 0.2)。成功地以连续工艺包封地塞米松,包封效率和载药量分别为 50%和 5%。地塞米松从纳米粒子中按照菲克扩散动力学释放。

结论

该方法允许生产用于药物输送的聚合物纳米粒子,具有高生产率、重现性和易于扩展的特点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验