Nogueira Daniele R, Mitjans Montserrat, Rolim Clarice M B, Vinardell M Pilar
Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain.
Nanomaterials (Basel). 2014 Jun 12;4(2):454-484. doi: 10.3390/nano4020454.
Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of approaches. In the present review, we provide a comprehensive and critical literature overview on current toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures.
工程纳米材料是具有技术上有趣特性和广泛应用前景的新兴功能材料,例如药物递送装置、医学成像与诊断以及各种其他工业产品。然而,人们对这类材料的风险以及它们是否会造成不良影响表示担忧。使用细胞模型和一系列方法对纳米材料的潜在危害进行了广泛研究。在本综述中,我们对当前用于确定纳米结构诱导细胞毒性作用机制的毒性测试方法进行了全面且批判性的文献综述。纳米材料的小尺寸、表面电荷、疏水性和高吸附能力使其能够在细胞膜和亚细胞细胞器内发生特定相互作用,进而可能通过一系列不同机制导致细胞毒性。最后,综合关于纳米材料细胞毒性反应与对其结构和物理化学性质理解之间关系的给定信息,可能会促进生物安全纳米结构的设计。