Suppr超能文献

选择MUSE:用于事件相关电位(ERP)研究的低成本便携式脑电图(EEG)系统的验证

Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research.

作者信息

Krigolson Olave E, Williams Chad C, Norton Angela, Hassall Cameron D, Colino Francisco L

机构信息

Neuroeconomics Laboratory, Centre for Biomedical Research, University of Victoria Victoria, BC, Canada.

出版信息

Front Neurosci. 2017 Mar 10;11:109. doi: 10.3389/fnins.2017.00109. eCollection 2017.

Abstract

In recent years there has been an increase in the number of portable low-cost electroencephalographic (EEG) systems available to researchers. However, to date the validation of the use of low-cost EEG systems has focused on continuous recording of EEG data and/or the replication of large system EEG setups reliant on event-markers to afford examination of event-related brain potentials (ERP). Here, we demonstrate that it is possible to conduct ERP research without being reliant on event markers using a portable MUSE EEG system and a single computer. Specifically, we report the results of two experiments using data collected with the MUSE EEG system-one using the well-known visual oddball paradigm and the other using a standard reward-learning task. Our results demonstrate that we could observe and quantify the N200 and P300 ERP components in the visual oddball task and the reward positivity (the mirror opposite component to the feedback-related negativity) in the reward-learning task. Specifically, single sample -tests of component existence (all 's < 0.05), computation of Bayesian credible intervals, and 95% confidence intervals all statistically verified the existence of the N200, P300, and reward positivity in all analyses. We provide with this research paper an open source website with all the instructions, methods, and software to replicate our findings and to provide researchers with an easy way to use the MUSE EEG system for ERP research. Importantly, our work highlights that with a single computer and a portable EEG system such as the MUSE one can conduct ERP research with ease thus greatly extending the possible use of the ERP methodology to a variety of novel contexts.

摘要

近年来,研究人员可用的便携式低成本脑电图(EEG)系统数量有所增加。然而,迄今为止,对低成本EEG系统使用的验证主要集中在EEG数据的连续记录和/或依赖事件标记的大型系统EEG设置的复制上,以便能够检查事件相关脑电位(ERP)。在此,我们证明了使用便携式MUSE EEG系统和一台计算机,无需依赖事件标记就可以进行ERP研究。具体而言,我们报告了两项实验的结果,这些实验使用了从MUSE EEG系统收集的数据——一项使用了著名的视觉Oddball范式,另一项使用了标准的奖励学习任务。我们的结果表明,在视觉Oddball任务中,我们能够观察并量化N200和P300 ERP成分,在奖励学习任务中能够观察并量化奖励正波(与反馈相关负波相反的成分)。具体来说,成分存在的单样本检验(所有p值<0.05)、贝叶斯可信区间的计算以及95%置信区间在所有分析中均从统计学上验证了N200、P300和奖励正波的存在。在本研究论文中,我们提供了一个开源网站,其中包含所有说明、方法和软件,用于复制我们的研究结果,并为研究人员提供一种简单的方法,以便使用MUSE EEG系统进行ERP研究。重要的是,我们的工作强调,使用一台计算机和一个便携式EEG系统(如MUSE),就可以轻松地进行ERP研究,从而极大地扩展了ERP方法在各种新环境中的可能应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69e2/5344886/e2720738c0d7/fnins-11-00109-g0001.jpg

相似文献

1
Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research.
Front Neurosci. 2017 Mar 10;11:109. doi: 10.3389/fnins.2017.00109. eCollection 2017.
2
Using Muse: Rapid Mobile Assessment of Brain Performance.
Front Neurosci. 2021 Jan 28;15:634147. doi: 10.3389/fnins.2021.634147. eCollection 2021.
3
Event-related brain potentials and the study of reward processing: Methodological considerations.
Int J Psychophysiol. 2018 Oct;132(Pt B):175-183. doi: 10.1016/j.ijpsycho.2017.11.007. Epub 2017 Nov 14.
4
Acquiring research-grade ERPs on a shoestring budget: A comparison of a modified Emotiv and commercial SynAmps EEG system.
Psychophysiology. 2017 Sep;54(9):1393-1404. doi: 10.1111/psyp.12888. Epub 2017 May 12.
5
Low-Cost Classroom and Laboratory Exercises for Investigating Both Wave and Event-Related Electroencephalogram Potentials.
J Undergrad Neurosci Educ. 2024 Aug 31;22(3):A197-A206. doi: 10.59390/YNPH4485. eCollection 2024 Spring.
6
How low can you go? Measuring human event-related brain potentials from a two-channel EEG system.
Int J Psychophysiol. 2023 May;187:20-26. doi: 10.1016/j.ijpsycho.2023.02.005. Epub 2023 Feb 20.
7
Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing.
Int J Psychophysiol. 2018 Oct;132(Pt B):184-202. doi: 10.1016/j.ijpsycho.2018.02.002. Epub 2018 Feb 15.
8
Quantifying fast optical signal and event-related potential relationships during a visual oddball task.
Neuroimage. 2018 Sep;178:119-128. doi: 10.1016/j.neuroimage.2018.05.031. Epub 2018 May 16.
9
A validation of Emotiv EPOC Flex saline for EEG and ERP research.
PeerJ. 2020 Aug 11;8:e9713. doi: 10.7717/peerj.9713. eCollection 2020.
10
The relationship between ERP components and EEG spatial complexity in a visual Go/Nogo task.
J Neurophysiol. 2017 Jan 1;117(1):275-283. doi: 10.1152/jn.00363.2016. Epub 2016 Oct 26.

引用本文的文献

1
An in-flight multimodal data collection method for assessing pilot cognitive states and performance in general aviation.
MethodsX. 2025 Aug 27;15:103589. doi: 10.1016/j.mex.2025.103589. eCollection 2025 Dec.
2
The application of electroencephalogram in depression research: bibliometric and technological application analysis from 2005 to 2025.
Front Neurosci. 2025 Aug 21;19:1653693. doi: 10.3389/fnins.2025.1653693. eCollection 2025.
3
Watching live performances enhances subjective and physiological emotional responses compared to viewing the same performance on screen.
IBRO Neurosci Rep. 2025 Aug 7;19:381-390. doi: 10.1016/j.ibneur.2025.08.002. eCollection 2025 Dec.
5
Do try this at home: Age prediction from sleep and meditation with large-scale low-cost mobile EEG.
Imaging Neurosci (Camb). 2024 Jun 21;2. doi: 10.1162/imag_a_00189. eCollection 2024.
6
Assessment of cognitive load in the context of neurosurgery.
Int J Comput Assist Radiol Surg. 2025 Jul 12. doi: 10.1007/s11548-025-03478-y.
7
Experience-based risk taking is primarily shaped by prior learning rather than by decision-making.
Nat Commun. 2025 Jul 9;16(1):6310. doi: 10.1038/s41467-025-61609-0.
8
A Comprehensive Review of Unobtrusive Biosensing in Intelligent Vehicles: Sensors, Algorithms, and Integration Challenges.
Bioengineering (Basel). 2025 Jun 18;12(6):669. doi: 10.3390/bioengineering12060669.

本文引用的文献

1
Transitioning EEG experiments away from the laboratory using a Raspberry Pi 2.
J Neurosci Methods. 2017 Feb 1;277:75-82. doi: 10.1016/j.jneumeth.2016.11.013. Epub 2016 Nov 25.
2
Consumer-grade EEG devices: are they usable for control tasks?
PeerJ. 2016 Mar 22;4:e1746. doi: 10.7717/peerj.1746. eCollection 2016.
4
The reward positivity: from basic research on reward to a biomarker for depression.
Psychophysiology. 2015 Apr;52(4):449-59. doi: 10.1111/psyp.12370. Epub 2014 Oct 17.
5
Towards the measurement of event-related EEG activity in real-life working environments.
Int J Psychophysiol. 2014 Jan;91(1):3-9. doi: 10.1016/j.ijpsycho.2013.10.006. Epub 2013 Oct 19.
6
Spectral modulation of frontal EEG during motor skill acquisition: a mobile EEG study.
Int J Psychophysiol. 2014 Jan;91(1):16-21. doi: 10.1016/j.ijpsycho.2013.09.004. Epub 2013 Oct 2.
7
Imaging natural cognition in action.
Int J Psychophysiol. 2014 Jan;91(1):22-9. doi: 10.1016/j.ijpsycho.2013.09.003. Epub 2013 Sep 26.
8
Towards a truly mobile auditory brain-computer interface: exploring the P300 to take away.
Int J Psychophysiol. 2014 Jan;91(1):46-53. doi: 10.1016/j.ijpsycho.2013.08.010. Epub 2013 Aug 29.
9
Performance of the Emotiv Epoc headset for P300-based applications.
Biomed Eng Online. 2013 Jun 25;12:56. doi: 10.1186/1475-925X-12-56.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验