Suppr超能文献

一种用于评估通用航空中飞行员认知状态和表现的飞行中多模态数据收集方法。

An in-flight multimodal data collection method for assessing pilot cognitive states and performance in general aviation.

作者信息

Xu Rongbing, Cao Shi, Barnett-Cowan Michael, Bulbul Gulnaz, Irving Elizabeth, Niechwiej-Szwedo Ewa, Kearns Suzanne

机构信息

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.

Waterloo Institute for Sustainable Aeronautics, University of Waterloo, Waterloo, ON, Canada.

出版信息

MethodsX. 2025 Aug 27;15:103589. doi: 10.1016/j.mex.2025.103589. eCollection 2025 Dec.

Abstract

Human factors are central to aviation safety, with pilot cognitive states such as workload, stress, and situation awareness playing important roles in flight performance and safety. Although flight simulators are widely used for training and scientific research, they often lack the ecological validity needed to replicate pilot cognitive states from real flights. To address these limitations, a new in-flight data collection methodology for general aviation using a Cessna 172 aircraft, which is one of the most widely used aircraft for pilot training, is presented. The dataset combines: • Human data from wearable physiological sensors (electroencephalography, electrocardiography, electrodermal activity, and body temperature) and eye-tracking glasses. • Flight data from ADS-B flight recorder. • Pilot's self-reported cognitive states and flight performance rate by instructor. The paper describes the sensor setup, flight task design, and data synchronization procedures. Potential analyses using statistical and machine learning methods are discussed to classify cognitive states and demonstrate the dataset's value. This methodology supports human factors research and has practical value for applications in pilot training, performance evaluation, and aviation safety management. The method was applied in a field study with 25 participants, from which 20 complete multimodal datasets were retained after data cleaning. After collecting additional data, the resulting dataset will support further research on pilot performance and behavior.

摘要

人为因素是航空安全的核心,飞行员的认知状态,如工作量、压力和态势感知,在飞行性能和安全方面发挥着重要作用。尽管飞行模拟器广泛用于培训和科学研究,但它们往往缺乏复制真实飞行中飞行员认知状态所需的生态效度。为解决这些局限性,本文介绍了一种使用塞斯纳172飞机的通用航空飞行中数据收集新方法,塞斯纳172是飞行员培训中使用最广泛的飞机之一。该数据集结合了:• 来自可穿戴生理传感器(脑电图、心电图、皮肤电活动和体温)和眼动追踪眼镜的人体数据。• 来自自动相关监视-广播(ADS-B)飞行记录仪的飞行数据。• 飞行员自我报告的认知状态和教员评定的飞行表现率。本文描述了传感器设置、飞行任务设计和数据同步程序。讨论了使用统计和机器学习方法进行潜在分析,以对认知状态进行分类并证明数据集的价值。这种方法支持人为因素研究,对飞行员培训、性能评估和航空安全管理应用具有实际价值。该方法应用于一项有25名参与者的实地研究,数据清理后保留了20个完整的多模态数据集。在收集更多数据后,所得数据集将支持对飞行员性能和行为的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d2d/12414839/2e5226d5ef23/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验