Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Nat Biotechnol. 2013 May;31(5):448-52. doi: 10.1038/nbt.2510. Epub 2013 Feb 10.
Logic and memory are essential functions of circuits that generate complex, state-dependent responses. Here we describe a strategy for efficiently assembling synthetic genetic circuits that use recombinases to implement Boolean logic functions with stable DNA-encoded memory of events. Application of this strategy allowed us to create all 16 two-input Boolean logic functions in living Escherichia coli cells without requiring cascades comprising multiple logic gates. We demonstrate long-term maintenance of memory for at least 90 cell generations and the ability to interrogate the states of these synthetic devices with fluorescent reporters and PCR. Using this approach we created two-bit digital-to-analog converters, which should be useful in biotechnology applications for encoding multiple stable gene expression outputs using transient inputs of inducers. We envision that this integrated logic and memory system will enable the implementation of complex cellular state machines, behaviors and pathways for therapeutic, diagnostic and basic science applications.
逻辑和记忆是产生复杂、状态依赖反应的电路的基本功能。在这里,我们描述了一种有效的方法来组装合成遗传电路,该电路使用重组酶来实现具有稳定 DNA 编码事件记忆的布尔逻辑功能。该策略的应用使我们能够在不使用包含多个逻辑门的级联的情况下,在活大肠杆菌细胞中创建所有 16 个双输入布尔逻辑函数。我们证明了记忆至少可以维持 90 个细胞代,并且可以使用荧光报告器和 PCR 来检测这些合成设备的状态。使用这种方法,我们创建了两位数字到模拟转换器,这在生物技术应用中应该很有用,例如使用诱导剂的瞬时输入对多个稳定的基因表达输出进行编码。我们设想这个集成的逻辑和记忆系统将能够实现复杂的细胞状态机、行为和途径,用于治疗、诊断和基础科学应用。