Park Soon-Jung, Lee Sang A, Prasain Nutan, Bae Daekyeong, Kang Hyunsu, Ha Taewon, Kim Jong Soo, Hong Ki-Sung, Mantel Charlie, Moon Sung-Hwan, Broxmeyer Hal E, Lee Man Ryul
1 Department of Stem Cell Biology, Konkuk University School of Medicine , Seoul, Republic of Korea.
2 Soonchunhyang Institute of Medi-bio Science (SIMS) and Institute of Tissue Regeneration, Soon Chun Hyang University , Cheonan-si, Chungcheongnam-do, Republic of Korea.
Stem Cells Dev. 2017 May 15;26(10):734-742. doi: 10.1089/scd.2016.0320. Epub 2017 Mar 27.
Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.
要将体细胞转化为完全重编程的多能干细胞,需要获得适当的代谢命运。大多数诱导多能干细胞(iPSC)只是部分重编程,其转录组与多能干细胞不同。体细胞完全重编程为iPSC状态所需的代谢组学特征和线粒体代谢功能尚未阐明。阐明重编程机制背后的代谢物应能进一步优化,以提高获得完全重编程的iPSC的效率。在本研究中,我们对人类完全重编程的iPSC、部分重编程的iPSC和胚胎干细胞(ESC)的代谢物进行了表征。使用基于毛细管电泳飞行时间质谱的代谢组学,我们发现89%的分析代谢物在完全重编程的iPSC和人类ESC(hESC)中表达相似,而部分重编程的iPSC与hESC仅共享74%表达相似的代谢物。代谢组学分析表明,将线粒体呼吸转换为糖酵解通量对于将体细胞重编程为完全重编程的iPSC至关重要。iPSC中这种代谢重编程的表征可能有助于开发新的重编程参数,以提高完全重编程的人类iPSC的生成。