Suppr超能文献

记忆引导绘图训练增加了盲人从内嗅皮质到初级视觉皮层的格兰杰因果影响。

Memory-guided drawing training increases Granger causal influences from the perirhinal cortex to V1 in the blind.

作者信息

Cacciamani Laura, Likova Lora T

机构信息

The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St., San Francisco, CA 94114, USA.

The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St., San Francisco, CA 94114, USA.

出版信息

Neurobiol Learn Mem. 2017 May;141:101-107. doi: 10.1016/j.nlm.2017.03.013. Epub 2017 Mar 24.

Abstract

The perirhinal cortex (PRC) is a medial temporal lobe structure that has been implicated in not only visual memory in the sighted, but also tactile memory in the blind (Cacciamani & Likova, 2016). It has been proposed that, in the blind, the PRC may contribute to modulation of tactile memory responses that emerge in low-level "visual" area V1 as a result of training-induced cortical reorganization (Likova, 2012, 2015). While some studies in the sighted have indicated that the PRC is indeed structurally and functionally connected to the visual cortex (Clavagnier, Falchier, & Kennedy, 2004; Peterson, Cacciamani, Barense, & Scalf, 2012), the PRC's direct modulation of V1 is unknown-particularly in those who lack the visual input that typically stimulates this region. In the present study, we tested Likova's PRC modulation hypothesis; specifically, we used fMRI to assess the PRC's Granger causal influence on V1 activation in the blind during a tactile memory task. To do so, we trained congenital and acquired blind participants on a unique memory-guided drawing technique previously shown to result in V1 reorganization towards tactile memory representations (Likova, 2012). The tasks (20s each) included: tactile exploration of raised line drawings of faces and objects, tactile memory retrieval via drawing, and a scribble motor/memory control. FMRI before and after a week of the Cognitive-Kinesthetic training on these tasks revealed a significant increase in PRC-to-V1 Granger causality from pre- to post-training during the memory drawing task, but not during the motor/memory control. This increase in causal connectivity indicates that the training strengthened the top-down modulation of visual cortex from the PRC. This is the first study to demonstrate enhanced directed functional connectivity from the PRC to the visual cortex in the blind, implicating the PRC as a potential source of the reorganization towards tactile representations that occurs in V1 in the blind brain (Likova, 2012).

摘要

嗅周皮质(PRC)是颞叶内侧的一个结构,它不仅与视力正常者的视觉记忆有关,还与盲人的触觉记忆有关(卡恰马尼和利科娃,2016年)。有人提出,在盲人中,PRC可能有助于调节由于训练引起的皮质重组而在低级“视觉”区域V1中出现的触觉记忆反应(利科娃,2012年、2015年)。虽然一些针对视力正常者的研究表明,PRC确实在结构和功能上与视觉皮质相连(克拉瓦涅、法尔希尔和肯尼迪,2004年;彼得森、卡恰马尼、巴伦斯和斯卡尔夫,2012年),但PRC对V1的直接调节作用尚不清楚——尤其是在那些缺乏通常刺激该区域的视觉输入的人身上。在本研究中,我们检验了利科娃的PRC调节假说;具体而言,我们使用功能磁共振成像(fMRI)来评估在触觉记忆任务期间PRC对盲人V1激活的格兰杰因果影响。为此,我们对先天性和后天性盲人参与者进行了一种独特的记忆引导绘图技术训练,该技术先前已被证明会导致V1向触觉记忆表征重组(利科娃,2012年)。任务(每项20秒)包括:对脸部和物体的凸起线条图进行触觉探索、通过绘图进行触觉记忆检索,以及一个涂鸦运动/记忆控制任务。对这些任务进行一周的认知-动觉训练前后的功能磁共振成像显示,在记忆绘图任务期间,从训练前到训练后,PRC到V1的格兰杰因果关系显著增加,但在运动/记忆控制任务期间没有增加。这种因果连接性的增加表明,训练加强了PRC对视觉皮质的自上而下的调节。这是第一项证明盲人中从PRC到视觉皮质的定向功能连接增强的研究,这意味着PRC是盲人大脑中V1向触觉表征重组的潜在来源(利科娃,2012年)。

相似文献

1
Memory-guided drawing training increases Granger causal influences from the perirhinal cortex to V1 in the blind.
Neurobiol Learn Mem. 2017 May;141:101-107. doi: 10.1016/j.nlm.2017.03.013. Epub 2017 Mar 24.
2
Tactile Object Familiarity in the Blind Brain Reveals the Supramodal Perceptual-Mnemonic Nature of the Perirhinal Cortex.
Front Hum Neurosci. 2016 Apr 12;10:92. doi: 10.3389/fnhum.2016.00092. eCollection 2016.
3
Temporal evolution of brain reorganization under cross-modal training: .
Proc SPIE Int Soc Opt Eng. 2015 Feb;9394. doi: 10.1117/12.2178069. Epub 2015 Apr 2.
4
An investigation of cross-modal plasticity of effective connectivity in the blind by dynamic causal modeling of functional MRI data.
Neurosci Res. 2009 Oct;65(2):175-86. doi: 10.1016/j.neures.2009.06.014. Epub 2009 Jul 4.
5
Working memory training integrates visual cortex into beta-band networks in congenitally blind individuals.
Neuroimage. 2019 Jul 1;194:259-271. doi: 10.1016/j.neuroimage.2019.03.003. Epub 2019 Mar 7.
6
Correlation of vision loss with tactile-evoked V1 responses in retinitis pigmentosa.
Vision Res. 2015 Jun;111(Pt B):197-207. doi: 10.1016/j.visres.2014.10.015. Epub 2014 Nov 3.
8
V1 activation in congenitally blind humans is associated with episodic retrieval.
Cereb Cortex. 2005 Sep;15(9):1459-68. doi: 10.1093/cercor/bhi026. Epub 2005 Jan 12.
9
Critical period for cross-modal plasticity in blind humans: a functional MRI study.
Neuroimage. 2002 Jun;16(2):389-400. doi: 10.1006/nimg.2002.1111.

引用本文的文献

3
Multipurpose Spatiomotor Capture System for Haptic and Visual Training and Testing in the Blind and Sighted.
IS&T Int Symp Electron Imaging. 2021;33(11). doi: 10.2352/issn.2470-1173.2021.11.hvei-160.
4
Mental Visualization in the Cerebellum: Rapid Non-motor Learning at Sub-Lobular and Causal Network Levels.
Front Syst Neurosci. 2021 Sep 10;15:655514. doi: 10.3389/fnsys.2021.655514. eCollection 2021.
5
Transfer of Learning in People Who Are Blind: Enhancement of Spatial-Cognitive Abilities Through Drawing.
J Vis Impair Blind. 2018 Jul 1;112(4):385-397. doi: 10.1177/0145482x1811200405.
6
Haptic aesthetics in the blind: A behavioral and fMRI investigation.
IS&T Int Symp Electron Imaging. 2018;2018. doi: 10.2352/ISSN.2470-1173.2018.14.HVEI-532.
7
Age-Related Changes in Perirhinal Cortex Sensitivity to Configuration and Part Familiarity and Connectivity to Visual Cortex.
Front Aging Neurosci. 2017 Sep 15;9:291. doi: 10.3389/fnagi.2017.00291. eCollection 2017.

本文引用的文献

1
Temporal evolution of brain reorganization under cross-modal training: .
Proc SPIE Int Soc Opt Eng. 2015 Feb;9394. doi: 10.1117/12.2178069. Epub 2015 Apr 2.
2
Tactile Object Familiarity in the Blind Brain Reveals the Supramodal Perceptual-Mnemonic Nature of the Perirhinal Cortex.
Front Hum Neurosci. 2016 Apr 12;10:92. doi: 10.3389/fnhum.2016.00092. eCollection 2016.
3
A Cross-Modal Perspective on the Relationships between Imagery and Working Memory.
Front Psychol. 2013 Jan 18;3:561. doi: 10.3389/fpsyg.2012.00561. eCollection 2012.
4
Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling.
Neuroimage. 2013 Jan 15;65:540-55. doi: 10.1016/j.neuroimage.2012.09.049. Epub 2012 Oct 2.
6
The Berkeley Rudimentary Vision Test.
Optom Vis Sci. 2012 Sep;89(9):1257-64. doi: 10.1097/OPX.0b013e318264e85a.
7
Drawing enhances cross-modal memory plasticity in the human brain: a case study in a totally blind adult.
Front Hum Neurosci. 2012 May 14;6:44. doi: 10.3389/fnhum.2012.00044. eCollection 2012.
8
Interactions of memory and perception in amnesia: the figure-ground perspective.
Cereb Cortex. 2012 Nov;22(11):2680-91. doi: 10.1093/cercor/bhr347. Epub 2011 Dec 15.
9
Perception and conception: temporal lobe activity during complex discriminations of familiar and novel faces and objects.
J Cogn Neurosci. 2011 Oct;23(10):3052-67. doi: 10.1162/jocn_a_00010. Epub 2011 Mar 10.
10
A MATLAB toolbox for Granger causal connectivity analysis.
J Neurosci Methods. 2010 Feb 15;186(2):262-73. doi: 10.1016/j.jneumeth.2009.11.020. Epub 2009 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验