Department of Biology, Brandeis University, Waltham, MA 02454.
Department of Biology, Brandeis University, Waltham, MA 02454
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3832-3836. doi: 10.1073/pnas.1618206114. Epub 2017 Mar 27.
Superresolution microscopy has fundamentally altered our ability to resolve subcellular proteins, but improving on these techniques to study dense structures composed of single-molecule-sized elements has been a challenge. One possible approach to enhance superresolution precision is to use cryogenic fluorescent imaging, reported to reduce fluorescent protein bleaching rates, thereby increasing the precision of superresolution imaging. Here, we describe an approach to cryogenic photoactivated localization microscopy (cPALM) that permits the use of a room-temperature high-numerical-aperture objective lens to image frozen samples in their native state. We find that cPALM increases photon yields and show that this approach can be used to enhance the effective resolution of two photoactivatable/switchable fluorophore-labeled structures in the same frozen sample. This higher resolution, two-color extension of the cPALM technique will expand the accessibility of this approach to a range of laboratories interested in more precise reconstructions of complex subcellular targets.
超分辨率显微镜从根本上改变了我们对亚细胞蛋白进行分辨率的能力,但要提高这些技术以研究由单分子大小的元件组成的密集结构一直是一个挑战。提高超分辨率精度的一种可能方法是使用低温荧光成像,据报道,这种方法可以降低荧光蛋白的漂白率,从而提高超分辨率成像的精度。在这里,我们描述了一种低温光激活定位显微镜 (cPALM) 的方法,该方法允许使用室温高数值孔径物镜在其天然状态下对冷冻样品进行成像。我们发现 cPALM 增加了光子产量,并表明该方法可用于增强两个在同一冷冻样品中用光可激活/可切换荧光染料标记的结构的有效分辨率。该 cPALM 技术的更高分辨率、双色扩展将扩大对此类方法感兴趣的一系列实验室对复杂亚细胞靶标进行更精确重建的可及性。