Bateman Benji C, Zanetti-Domingues Laura C, Moores Amy N, Needham Sarah R, Rolfe Daniel J, Wang Lin, Clarke David T, Martin-Fernandez Marisa L
Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK.
Bio Protoc. 2019 Nov 20;9(22):e3426. doi: 10.21769/BioProtoc.3426.
Our mechanistic understanding of cell function depends on imaging biological processes in cells with molecular resolution. Super-resolution fluorescence microscopy plays a crucial role by reporting cellular ultrastructure with 20-30 nm resolution. However, this resolution is insufficient to image macro-molecular machinery at work. A path to improve resolution is to image under cryogenic conditions, which substantially increases the brightness of most fluorophores and preserves native ultrastructure much better than chemical fixatives. Cryogenic conditions are, however, underutilized because of the lack of compatible high numerical aperture (NA) objectives. Here we describe a protocol for the use of super-hemispherical solid immersion lenses (SILs) to achieve super-resolution imaging at cryogenic temperatures with an effective NA of 2.17 and resolution of ~10 nm.
我们对细胞功能的机理理解依赖于以分子分辨率对细胞内的生物学过程进行成像。超分辨率荧光显微镜通过以20 - 30纳米的分辨率报告细胞超微结构发挥着关键作用。然而,这种分辨率不足以对工作中的大分子机器进行成像。提高分辨率的一个途径是在低温条件下成像,这会大幅增加大多数荧光团的亮度,并且比化学固定剂更好地保留天然超微结构。然而,由于缺乏兼容的高数值孔径(NA)物镜,低温条件未得到充分利用。在此,我们描述了一种使用超半球形固体浸没透镜(SIL)的方案,以在低温下实现有效NA为2.17且分辨率约为10纳米的超分辨率成像。