Department of Chemistry , Indiana University , Bloomington , Indiana 47405-7102 United States.
Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , Indiana 47405 United States.
J Am Chem Soc. 2018 Jul 25;140(29):9108-9119. doi: 10.1021/jacs.8b02129. Epub 2018 Jul 16.
Allostery is a regulatory phenomenon whereby ligand binding to one site influences the binding of the same or a different ligand to another site on a macromolecule. The physical origins of allosteric regulation remain under intense investigation. In general terms, ligand-induced structural changes, perturbations of residue-specific dynamics, and surrounding solvent molecules all potentially contribute to the global energetics of allostery. While the role of solvent is generally well understood in regulatory events associated with major protein structural rearrangements, the degree to which protein dynamics impact solvent degrees of freedom is unclear, particularly in cases of dynamically driven allostery. With the aid of new crystal structures, extensive calorimetric and residue-specific dynamics studies over a range of time scales and temperatures, we dissect for the first time the relative degree to which changes in solvent entropy and residue-specific dynamics impact dynamically driven, allosteric inhibition of DNA binding by Zn in the zinc efflux repressor, CzrA (chromosomal zinc-regulated repressor). We show that non-native residue-specific dynamics in allosterically impaired CzrA mutants are accompanied by significant perturbations in solvent entropy that cannot be predicted from crystal structures. We conclude that functional dynamics are not necessarily restricted to protein residues but involve surface water molecules that may be responding to ligand (Zn)-mediated perturbations in protein internal motions that define the conformational ensemble, rather than major structural rearrangements.
变构作用是一种调节现象,其中配体与一个位点的结合会影响同一或不同配体与大分子上另一个位点的结合。变构调节的物理起源仍在深入研究中。一般来说,配体诱导的结构变化、残基特异性动力学的扰动以及周围溶剂分子都可能对变构的整体能量学产生影响。虽然在与主要蛋白质结构重排相关的调节事件中,溶剂的作用通常被很好地理解,但蛋白质动力学对溶剂自由度的影响程度尚不清楚,特别是在动态驱动的变构作用的情况下。在新晶体结构的帮助下,我们进行了广泛的量热学和残基特异性动力学研究,涵盖了一系列时间尺度和温度,首次解析了溶剂熵和残基特异性动力学变化在动态驱动的变构抑制 DNA 结合方面的相对程度锌在锌流出抑制剂 CzrA(染色体锌调控抑制剂)中的作用。我们表明,在变构受损的 CzrA 突变体中,非天然的残基特异性动力学伴随着溶剂熵的显著扰动,这些扰动无法从晶体结构中预测。我们得出结论,功能动力学不一定局限于蛋白质残基,而是涉及表面水分子,这些水分子可能是对配体(Zn)介导的蛋白质内部运动的扰动做出反应,这些运动定义了构象集合,而不是主要的结构重排。