Sinha Manisha, Narayanan Rishikesh
Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2207-16. doi: 10.1073/pnas.1419017112. Epub 2015 Apr 13.
What are the implications for the existence of subthreshold ion channels, their localization profiles, and plasticity on local field potentials (LFPs)? Here, we assessed the role of hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in altering hippocampal theta-frequency LFPs and the associated spike phase. We presented spatiotemporally randomized, balanced theta-modulated excitatory and inhibitory inputs to somatically aligned, morphologically realistic pyramidal neuron models spread across a cylindrical neuropil. We computed LFPs from seven electrode sites and found that the insertion of an experimentally constrained HCN-conductance gradient into these neurons introduced a location-dependent lead in the LFP phase without significantly altering its amplitude. Further, neurons fired action potentials at a specific theta phase of the LFP, and the insertion of HCN channels introduced large lags in this spike phase and a striking enhancement in neuronal spike-phase coherence. Importantly, graded changes in either HCN conductance or its half-maximal activation voltage resulted in graded changes in LFP and spike phases. Our conclusions on the impact of HCN channels on LFPs and spike phase were invariant to changes in neuropil size, to morphological heterogeneity, to excitatory or inhibitory synaptic scaling, and to shifts in the onset phase of inhibitory inputs. Finally, we selectively abolished the inductive lead in the impedance phase introduced by HCN channels without altering neuronal excitability and found that this inductive phase lead contributed significantly to changes in LFP and spike phase. Our results uncover specific roles for HCN channels and their plasticity in phase-coding schemas and in the formation and dynamic reconfiguration of neuronal cell assemblies.
阈下离子通道的存在、其定位分布以及可塑性对局部场电位(LFP)有何影响?在此,我们评估了超极化激活的环核苷酸门控(HCN)通道在改变海马体θ频率局部场电位及相关锋电位相位方面的作用。我们向分布在圆柱形神经纤维网中的体细胞对齐、形态逼真的锥体神经元模型提供了时空随机、平衡的θ调制兴奋性和抑制性输入。我们从七个电极位点计算局部场电位,发现将实验约束的HCN电导梯度插入这些神经元会在局部场电位相位中引入位置依赖性的超前,而不会显著改变其幅度。此外,神经元在局部场电位的特定θ相位发放动作电位,插入HCN通道会在这个锋电位相位引入大的延迟,并显著增强神经元锋电位相位的相干性。重要的是,HCN电导或其半数最大激活电压的分级变化会导致局部场电位和锋电位相位的分级变化。我们关于HCN通道对局部场电位和锋电位相位影响的结论对于神经纤维网大小的变化、形态异质性、兴奋性或抑制性突触缩放以及抑制性输入起始相位的变化都是不变的。最后,我们在不改变神经元兴奋性的情况下选择性地消除了HCN通道引入的阻抗相位中的诱导超前,发现这种诱导相位超前对局部场电位和锋电位相位的变化有显著贡献。我们的结果揭示了HCN通道及其可塑性在相位编码模式以及神经元细胞集合的形成和动态重构中的特定作用。