Suppr超能文献

通过功能连接组学和机器学习来区分帕金森病患者的认知状态。

Discriminating cognitive status in Parkinson's disease through functional connectomics and machine learning.

机构信息

Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain.

Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.

出版信息

Sci Rep. 2017 Mar 28;7:45347. doi: 10.1038/srep45347.

Abstract

There is growing interest in the potential of neuroimaging to help develop non-invasive biomarkers in neurodegenerative diseases. In this study, connection-wise patterns of functional connectivity were used to distinguish Parkinson's disease patients according to cognitive status using machine learning. Two independent subject samples were assessed with resting-state fMRI. The first (training) sample comprised 38 healthy controls and 70 Parkinson's disease patients (27 with mild cognitive impairment). The second (validation) sample included 25 patients (8 with mild cognitive impairment). The Brainnetome atlas was used to reconstruct the functional connectomes. Using a support vector machine trained on features selected through randomized logistic regression with leave-one-out cross-validation, a mean accuracy of 82.6% (p < 0.002) was achieved in separating patients with mild cognitive impairment from those without it in the training sample. The model trained on the whole training sample achieved an accuracy of 80.0% when used to classify the validation sample (p = 0.006). Correlation analyses showed that the connectivity level in the edges most consistently selected as features was associated with memory and executive function performance in the patient group. Our results demonstrate that connection-wise patterns of functional connectivity may be useful for discriminating Parkinson's disease patients according to the presence of cognitive deficits.

摘要

人们对神经影像学在神经退行性疾病中帮助开发非侵入性生物标志物的潜力越来越感兴趣。在这项研究中,使用连接方式的功能连接模式,通过机器学习根据认知状态将帕金森病患者区分开来。使用静息态 fMRI 评估了两个独立的受试者样本。第一个(训练)样本包括 38 名健康对照者和 70 名帕金森病患者(27 名有轻度认知障碍)。第二个(验证)样本包括 25 名患者(8 名有轻度认知障碍)。使用 Brainnetome 图谱重建功能连接组。通过使用随机逻辑回归与留一交叉验证进行特征选择的支持向量机进行训练,在训练样本中,区分有轻度认知障碍和无轻度认知障碍的患者的平均准确率为 82.6%(p<0.002)。当用于对验证样本进行分类时,使用整个训练样本训练的模型的准确率为 80.0%(p=0.006)。相关性分析表明,作为特征选择的边缘的连接水平与患者组的记忆和执行功能表现相关。我们的结果表明,功能连接的连接方式模式可能有助于根据认知缺陷将帕金森病患者区分开来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6cb/5368610/64b9dae78571/srep45347-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验