South Paul F, Walker Berkley J, Cavanagh Amanda P, Rolland Vivien, Badger Murray, Ort Donald R
Global Change and Photosynthesis Research Unit, U.S. Department of Agriculture/Agricultural Research Service, Urbana, Illinois 61801.
Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801.
Plant Cell. 2017 Apr;29(4):808-823. doi: 10.1105/tpc.16.00775. Epub 2017 Mar 28.
Photorespiration is an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the Rubisco oxygenation reaction. The photorespiratory pathway is highly compartmentalized, involving the chloroplast, peroxisome, cytosol, and mitochondria. Though the soluble enzymes involved in photorespiration are well characterized, very few membrane transporters involved in photorespiration have been identified to date. In this work, plants containing a T-DNA disruption of the bile acid sodium symporter BASS6 show decreased photosynthesis and slower growth under ambient, but not elevated CO Exogenous expression of BASS6 complemented this photorespiration mutant phenotype. In addition, metabolite analysis and genetic complementation of glycolate transport in yeast showed that BASS6 was capable of glycolate transport. This is consistent with its involvement in the photorespiratory export of glycolate from Arabidopsis chloroplasts. An Arabidopsis double knockout line of both BASS6 and the glycolate/glycerate transporter PLGG1 () showed an additive growth defect, an increase in glycolate accumulation, and reductions in photosynthetic rates compared with either single mutant. Our data indicate that BASS6 and PLGG1 partner in glycolate export from the chloroplast, whereas PLGG1 alone accounts for the import of glycerate. BASS6 and PLGG1 therefore balance the export of two glycolate molecules with the import of one glycerate molecule during photorespiration.
光呼吸是一个能量密集型过程,它回收2-磷酸乙醇酸,这是核酮糖-1,5-二磷酸羧化酶加氧反应的有毒产物。光呼吸途径高度区室化,涉及叶绿体、过氧化物酶体、细胞质和线粒体。尽管参与光呼吸的可溶性酶已得到充分表征,但迄今为止,已鉴定出的参与光呼吸的膜转运蛋白却非常少。在这项研究中,含有胆汁酸钠同向转运体BASS6的T-DNA插入突变体的植物在正常环境条件下光合作用下降且生长缓慢,但在高浓度二氧化碳环境下并非如此。BASS6的外源表达弥补了这种光呼吸突变体表型。此外,酵母中乙醇酸转运的代谢物分析和遗传互补表明,BASS6能够转运乙醇酸。这与其参与拟南芥叶绿体中乙醇酸的光呼吸输出是一致的。与任一单突变体相比,BASS6和乙醇酸/甘油酸转运体PLGG1的拟南芥双敲除系表现出累加的生长缺陷、乙醇酸积累增加以及光合速率降低。我们的数据表明,BASS6和PLGG1在叶绿体乙醇酸输出过程中相互协作,而PLGG1单独负责甘油酸的输入。因此,在光呼吸过程中,BASS6和PLGG1平衡了两个乙醇酸分子的输出与一个甘油酸分子的输入。