State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China.
Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
J Exp Bot. 2021 Mar 29;72(7):2584-2599. doi: 10.1093/jxb/erab020.
The photorespiratory pathway is highly compartmentalized. As such, metabolite shuttles between organelles are critical to ensure efficient photorespiratory carbon flux. Arabidopsis plastidic glycolate/glycerate translocator 1 (PLGG1) has been reported as a key chloroplastic glycolate/glycerate transporter. Two homologous genes, OsPLGG1a and OsPLGG1b, have been identified in the rice genome, although their distinct functions and relationships remain unknown. Herein, our analysis of exogenous expression in oocytes and yeast shows that both OsPLGG1a and OsPLGG1b have the ability to transport glycolate and glycerate. Furthermore, we demonstrate in planta that the perturbation of OsPLGG1a or OsPLGG1b expression leads to extensive accumulation of photorespiratory metabolites, especially glycolate and glycerate. Under ambient CO2 conditions, loss-of-function osplgg1a or osplgg1b mutant plants exhibited significant decreases in photosynthesis efficiency, starch accumulation, plant height, and crop productivity. These morphological defects were almost entirely recovered when the mutant plants were grown under elevated CO2 conditions. In contrast to osplgg1a, osplgg1b mutant alleles produced a mild photorespiratory phenotype and had reduced accumulation of photorespiratory metabolites. Subcellular localization analysis showed that OsPLGG1a and OsPLGG1b are located in the inner and outer membranes of the chloroplast envelope, respectively. In vitro and in vivo experiments revealed that OsPLGG1a and OsPLGG1b have a direct interaction. Our results indicate that both OsPLGG1a and OsPLGG1b are chloroplastic glycolate/glycerate transporters required for photorespiratory metabolism and plant growth, and that they may function as a singular complex.
光呼吸途径高度区室化。因此,细胞器之间的代谢物穿梭对于确保有效的光呼吸碳通量至关重要。拟南芥质体甘油酸/甘油转运蛋白 1 (PLGG1) 已被报道为关键的质体甘油酸/甘油转运蛋白。在水稻基因组中已经鉴定出两个同源基因,OsPLGG1a 和 OsPLGG1b,尽管它们的功能和关系尚不清楚。在此,我们通过卵母细胞和酵母的外源表达分析表明,OsPLGG1a 和 OsPLGG1b 均具有转运甘油酸和甘油的能力。此外,我们在体内证明了 OsPLGG1a 或 OsPLGG1b 表达的干扰会导致光呼吸代谢物,特别是甘油酸和甘油的大量积累。在环境 CO2 条件下,功能丧失型 osplgg1a 或 osplgg1b 突变体植物的光合作用效率、淀粉积累、株高和作物生产力显著降低。当突变体植物在高 CO2 条件下生长时,这些形态缺陷几乎完全恢复。与 osplgg1a 相反,osplgg1b 突变等位基因产生轻微的光呼吸表型,并且光呼吸代谢物的积累减少。亚细胞定位分析表明,OsPLGG1a 和 OsPLGG1b 分别位于叶绿体被膜的内、外膜上。体外和体内实验表明,OsPLGG1a 和 OsPLGG1b 之间存在直接相互作用。我们的结果表明,OsPLGG1a 和 OsPLGG1b 都是质体甘油酸/甘油转运蛋白,是光呼吸代谢和植物生长所必需的,它们可能作为一个单一的复合物发挥作用。