Suppr超能文献

双光子激发下的自辅助光热捕获金纳米棒。

Self-assisted optothermal trapping of gold nanorods under two-photon excitation.

机构信息

Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, CA, USA.

出版信息

Methods Appl Fluoresc. 2016 Sep 6;4(3):035003. doi: 10.1088/2050-6120/4/3/035003.

Abstract

We report a self-assisted optothermal trapping and patterning of gold nanorods (GNRs) on glass surfaces with a femtosecond laser. We show that GNRs are not only the trapping targets, but also can enhance the optothermal trapping of other particles. This trapping phenomenon is the net result of thermophoresis and a convective flow caused by localized heating. The heating is due to the conversion of absorbed photons into heat at GNR's longitudinal surface plasmon resonance (LSPR) wavelength. First, we investigated the optothermal trapping of GNRs at their LSPR wavelength on the glass surface with as low as 0.5 mW laser power. The trapping range was observed to be larger than a typical field of view, e.g. 210 µm  ×  210 µm here. Second, by adjusting the distance between the laser focus and the glass surface, ring patterns of GNRs on the glass surface were obtained. These patterns could be controlled by the laser power and the numerical aperture of the microscope objective. Moreover, we examined the spectral emission of GNRs under different trapping conditions using the spectral phasor approach to reveal the temperature and association status of GNRs. Our study will help understanding manipulation of flows in solution and in biological systems that can be applied in future investigations of GNR-induced heating and flows.

摘要

我们报告了一种使用飞秒激光在玻璃表面上进行自辅助光热捕获和金纳米棒(GNRs)图案化的方法。我们表明,GNRs 不仅是捕获目标,还可以增强其他粒子的光热捕获。这种捕获现象是热泳和由局部加热引起的对流的净结果。加热是由于在 GNR 的纵向表面等离子体共振(LSPR)波长处吸收光子转化为热。首先,我们在低至 0.5 mW 激光功率下研究了 GNR 在玻璃表面上 LSPR 波长处的光热捕获。观察到的捕获范围大于典型的视场,例如此处为 210 µm×210 µm。其次,通过调整激光焦点与玻璃表面之间的距离,可以在玻璃表面上获得 GNR 的环形图案。这些图案可以通过激光功率和显微镜物镜的数值孔径来控制。此外,我们使用光谱相量方法检查了不同捕获条件下 GNR 的光谱发射,以揭示 GNR 的温度和聚集状态。我们的研究将有助于理解在溶液中和生物系统中对流动的操纵,这可以应用于未来对 GNR 诱导加热和流动的研究。

相似文献

1
Self-assisted optothermal trapping of gold nanorods under two-photon excitation.
Methods Appl Fluoresc. 2016 Sep 6;4(3):035003. doi: 10.1088/2050-6120/4/3/035003.
2
Influence of a three-dimensional photonic crystal on the plasmonic properties of gold nanorods.
Opt Express. 2016 Jun 27;24(13):14124-37. doi: 10.1364/OE.24.014124.
3
Spectral properties and dynamics of gold nanorods revealed by EMCCD-based spectral phasor method.
Microsc Res Tech. 2015 Apr;78(4):283-93. doi: 10.1002/jemt.22473. Epub 2015 Feb 13.
4
Photothermal effects of gold nanorods in aqueous solution and gel media: Influence of particle size and excitation wavelength.
IET Nanobiotechnol. 2023 Apr;17(2):103-111. doi: 10.1049/nbt2.12110. Epub 2022 Dec 21.
5
Multiplexed gold nanorod array biochip for multi-sample analysis.
Biosens Bioelectron. 2015 May 15;67:18-24. doi: 10.1016/j.bios.2014.07.041. Epub 2014 Jul 24.
6
Optothermal Manipulations of Colloidal Particles and Living Cells.
Acc Chem Res. 2018 Jun 19;51(6):1465-1474. doi: 10.1021/acs.accounts.8b00102. Epub 2018 May 25.
7
Oriented Gold Nanorods and Gold Nanorod Chains within Smectic Liquid Crystal Topological Defects.
ACS Nano. 2017 Jul 25;11(7):6728-6738. doi: 10.1021/acsnano.7b01132. Epub 2017 Jun 22.
8

引用本文的文献

1
Heat-Mediated Optical Manipulation.
Chem Rev. 2022 Feb 9;122(3):3122-3179. doi: 10.1021/acs.chemrev.1c00626. Epub 2021 Nov 19.

本文引用的文献

1
Energy transfer between a biological labelling dye and gold nanorods.
Methods Appl Fluoresc. 2013 Nov 15;2(1):015002. doi: 10.1088/2050-6120/2/1/015002.
2
A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system.
J Phys Condens Matter. 2015 Sep 4;27(34):345301. doi: 10.1088/0953-8984/27/34/345301. Epub 2015 Aug 7.
3
Spectral properties and dynamics of gold nanorods revealed by EMCCD-based spectral phasor method.
Microsc Res Tech. 2015 Apr;78(4):283-93. doi: 10.1002/jemt.22473. Epub 2015 Feb 13.
4
Optical trapping and manipulation of nanostructures.
Nat Nanotechnol. 2013 Nov;8(11):807-19. doi: 10.1038/nnano.2013.208.
5
Two-photon luminescence properties of gold nanorods.
Biomed Opt Express. 2013 Apr 1;4(4):584-95. doi: 10.1364/BOE.4.000584. Epub 2013 Mar 21.
6
Enhancement of the second-harmonic generation in a quantum dot-metallic nanoparticle hybrid system.
Nanotechnology. 2013 Mar 29;24(12):125701. doi: 10.1088/0957-4484/24/12/125701. Epub 2013 Mar 4.
8
Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
ACS Nano. 2012 Aug 28;6(8):7177-84. doi: 10.1021/nn3022469. Epub 2012 Aug 1.
9
10
Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control.
Nanotechnology. 2012 Jun 1;23(21):215302. doi: 10.1088/0957-4484/23/21/215302. Epub 2012 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验