Suppr超能文献

检验用于估计认知过程的冲突漂移扩散模型的有效性:一项参数恢复研究。

Testing the validity of conflict drift-diffusion models for use in estimating cognitive processes: A parameter-recovery study.

机构信息

Department of Psychology, Syracuse University, 409 Huntington Hall, Syracuse, NY, 13244, USA.

Department of Psychological Sciences, Vanderbilt University, Nashville, TN, USA.

出版信息

Psychon Bull Rev. 2018 Feb;25(1):286-301. doi: 10.3758/s13423-017-1271-2.

Abstract

Researchers and clinicians are interested in estimating individual differences in the ability to process conflicting information. Conflict processing is typically assessed by comparing behavioral measures like RTs or error rates from conflict tasks. However, these measures are hard to interpret because they can be influenced by additional processes like response caution or bias. This limitation can be circumvented by employing cognitive models to decompose behavioral data into components of underlying decision processes, providing better specificity for investigating individual differences. A new class of drift-diffusion models has been developed for conflict tasks, presenting a potential tool to improve analysis of individual differences in conflict processing. However, measures from these models have not been validated for use in experiments with limited data collection. The present study assessed the validity of these models with a parameter-recovery study to determine whether and under what circumstances the models provide valid measures of cognitive processing. Three models were tested: the dual-stage two-phase model (Hübner, Steinhauser, & Lehle, Psychological Review, 117(3), 759-784, 2010), the shrinking spotlight model (White, Ratcliff, & Starns, Cognitive Psychology, 63(4), 210-238, 2011), and the diffusion model for conflict tasks (Ulrich, Schröter, Leuthold, & Birngruber, Cogntive Psychology, 78, 148-174, 2015). The validity of the model parameters was assessed using different methods of fitting the data and different numbers of trials. The results show that each model has limitations in recovering valid parameters, but they can be mitigated by adding constraints to the model. Practical recommendations are provided for when and how each model can be used to analyze data and provide measures of processing in conflict tasks.

摘要

研究人员和临床医生有兴趣估计处理冲突信息能力的个体差异。冲突处理通常通过比较来自冲突任务的行为测量(如 RT 或错误率)来评估。然而,这些测量结果难以解释,因为它们可能受到其他过程(如反应谨慎或偏差)的影响。通过采用认知模型将行为数据分解为潜在决策过程的组成部分,可以克服这一限制,从而更好地特异性地研究个体差异。一类新的漂移扩散模型已被开发用于冲突任务,为分析冲突处理中的个体差异提供了一种潜在的工具。然而,这些模型的测量结果尚未在数据收集有限的实验中得到验证。本研究通过参数恢复研究评估了这些模型的有效性,以确定模型是否以及在什么情况下提供冲突处理认知加工的有效测量。测试了三个模型:双阶段两阶段模型(Hübner、Steinhauser 和 Lehle,《心理学评论》,117(3),759-784,2010)、收缩聚光灯模型(White、Ratcliff 和 Starns,《认知心理学》,63(4),210-238,2011)和冲突任务扩散模型(Ulrich、Schröter、Leuthold 和 Birngruber,《认知心理学》,78,148-174,2015)。通过使用不同的数据拟合方法和不同数量的试验来评估模型参数的有效性。结果表明,每个模型在恢复有效参数方面都存在局限性,但通过对模型施加约束可以减轻这些局限性。提供了关于何时以及如何使用每个模型分析数据并提供冲突任务处理措施的实用建议。

相似文献

3
Perceiving faces: Too much, too fast?-face specificity in response caution.感知面孔:过多、过快?——反应谨慎中的面孔特异性
J Exp Psychol Hum Percept Perform. 2019 Jan;45(1):16-38. doi: 10.1037/xhp0000582. Epub 2018 Nov 26.
6
A computational account of conflict processing during mental imagery.表象加工过程中冲突处理的计算解释。
Cogn Affect Behav Neurosci. 2024 Oct;24(5):816-838. doi: 10.3758/s13415-024-01201-z. Epub 2024 Jul 31.
7
A comment on the Revised Diffusion Model for Conflict tasks (RDMC).关于冲突任务的修正扩散模型(RDMC)的评论。
Psychon Bull Rev. 2025 Apr;32(2):690-704. doi: 10.3758/s13423-024-02574-5. Epub 2024 Oct 24.
9
A revised diffusion model for conflict tasks.用于冲突任务的修正扩散模型。
Psychon Bull Rev. 2024 Feb;31(1):1-31. doi: 10.3758/s13423-023-02288-0. Epub 2023 Jun 12.

引用本文的文献

3
Exploring the role of post-error processing in social anxiety across age.探索错误后处理在不同年龄段社交焦虑中的作用。
J Child Psychol Psychiatry. 2025 Aug;66(8):1223-1233. doi: 10.1111/jcpp.14146. Epub 2025 Mar 10.
7
A comment on the Revised Diffusion Model for Conflict tasks (RDMC).关于冲突任务的修正扩散模型(RDMC)的评论。
Psychon Bull Rev. 2025 Apr;32(2):690-704. doi: 10.3758/s13423-024-02574-5. Epub 2024 Oct 24.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验