Suppr超能文献

具有 100-皮秒配体到金属电荷转移光致发光的低自旋 Fe(iii) 配合物。

A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence.

机构信息

Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden.

Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden.

出版信息

Nature. 2017 Mar 29;543(7647):695-699. doi: 10.1038/nature21430.

Abstract

Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)] (where btz is 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.

摘要

过渡金属配合物可用作光致发光材料、发光二极管、生物传感器和光催化剂。这些应用的一个关键特征是从基态激发到电荷转移态;对于钌和其他贵金属的配合物,典型的长电荷转移态寿命通常是确保高性能的必要条件。人们非常有兴趣用丰富的地球元素替代这些稀缺元素,铁和铜由于其低成本和非毒性而特别有吸引力。但是,尽管探索了创新的分子设计,但是仍然面临着一个艰巨的科学挑战,即获取具有长寿命电荷转移激发态的丰富地球过渡金属配合物。没有已知的铁配合物被认为在室温下具有光致发光性,并且其快速的激发态失活阻止了它们作为光致发光剂的使用。在这里,我们提出了铁配合物[Fe(btz)](其中 btz 是 3,3'-二甲基-1,1'-双(对甲苯基)-4,4'-双(1,2,3-三唑-5-基)),并表明配体的优异的σ供体和π受体电子性质足以稳定激发态,从而实现 100 皮秒(ps)的长电荷转移寿命和室温下的光致发光。该物质是一种低自旋 Fe(iii)d 配合物,发射来自长寿命的配体到金属电荷转移(LMCT)态,这种态在过渡金属配合物中很少见。缺少系间窜跃,这通常会导致过渡金属配合物中大量激发态能量损失,从而能够观察到直接到基态的自旋允许发射,并且可以作为表面光化学反应中的驱动力增加。这些发现表明,适当的设计策略可以提供新的铁基材料,用作发光体和光致发光剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验