Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States.
Department of Materials Science and Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States.
ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13430-13439. doi: 10.1021/acsami.7b00133. Epub 2017 Apr 5.
Biomineralization is the process by which biological systems synthesize inorganic materials. Herein, we demonstrate an engineered cystathionine γ-lyase enzyme, smCSE that is active for the direct aqueous phase biomineralization of CdSe and CdSe-CdS core-shell nanocrystals. The nanocrystals are formed in an otherwise unreactive buffered solution of Cd acetate and selenocystine through enzymatic turnover of the selenocystine to form a reactive precursor, likely HSe. The particle size of the CdSe core nanocrystals can be tuned by varying the incubation time to generated particle sizes between 2.74 ± 0.63 nm and 4.78 ± 1.16 nm formed after 20 min and 24 h of incubation, respectively. Subsequent purification and introduction of l-cysteine as a sulfur source facilitates the biomineralization of a CdS shell onto the CdSe cores. The quantum yield of the resulting CdSe-CdS core-shell particles is up to 12% in the aqueous phase; comparable to that reported for more traditional chemical synthesis routes for core-shell particles of similar size with similar shell coverage. This single-enzyme route to functional nanocrystals synthesis reveals the powerful potential of biomineralization processes.
生物矿化是生物系统合成无机材料的过程。在此,我们展示了一种经过工程改造的半胱氨酸γ-裂解酶 smCSE,它可用于 CdSe 和 CdSe-CdS 核壳纳米晶体的直接水相生物矿化。纳米晶体是在 Cd 醋酸盐和硒代半胱氨酸的无反应缓冲溶液中通过酶促硒代半胱氨酸转化形成反应性前体 HSe 形成的。通过改变孵育时间,可以调整 CdSe 核纳米晶体的粒径,分别在 20 min 和 24 h 的孵育后生成 2.74±0.63nm 和 4.78±1.16nm 的粒径。随后的纯化和引入 l-半胱氨酸作为硫源,有利于 CdS 壳在 CdSe 核上的生物矿化。所得 CdSe-CdS 核壳纳米晶体的量子产率高达 12%,在水相中有较高的量子产率;与具有相似核壳覆盖率的类似尺寸核壳纳米晶体的更传统化学合成方法相比,具有相似的量子产率。这种单一酶途径合成功能性纳米晶体揭示了生物矿化过程的强大潜力。