Suppr超能文献

人格障碍与病理性人格特质的结构方程模型

Structural equation modeling of personality disorders and pathological personality traits.

作者信息

South Susan C, Jarnecke Amber M

机构信息

Department of Psychological Sciences, Purdue University.

出版信息

Personal Disord. 2017 Apr;8(2):113-129. doi: 10.1037/per0000215.

Abstract

Structural equation modeling (SEM) is a family of related statistical techniques that lend themselves to understanding the complex relationships among variables that differ among individuals in the population. SEM techniques have become increasingly popular in the study of personality disorders (PDs) and maladaptive personality traits. The current article takes a critical look at the ways in which SEM techniques have been used in the study of PDs, PD symptoms, and pathological personality traits. By far the most common use of SEM in the study of PDs has been to examine the latent structure of these constructs, with an overwhelming bulk of the evidence in favor of a dimensional, as opposed to categorical, conceptualization. Other common uses of SEM in this area are factor models that examine the joint multivariate space of PDs, maladaptive personality traits, and psychopathology. Relatively underused, however, are observed or latent variable path models. We review the strengths and weaknesses of the work done to date, focusing on ways that these SEM studies have been either theoretically and/or statistically sound. Finally, we offer suggestions for future research examining PDs with SEM techniques. (PsycINFO Database Record

摘要

结构方程模型(SEM)是一类相关的统计技术,适用于理解总体中个体间存在差异的变量之间的复杂关系。SEM技术在人格障碍(PDs)和适应不良人格特质的研究中越来越受欢迎。本文批判性地审视了SEM技术在PDs、PD症状和病理性人格特质研究中的应用方式。到目前为止,SEM在PDs研究中最常见的用途是检验这些构念的潜在结构,绝大多数证据支持维度化而非类别化的概念化。SEM在该领域的其他常见用途是检验PDs、适应不良人格特质和精神病理学联合多变量空间的因素模型。然而,观察到的或潜在变量路径模型的使用相对较少。我们回顾了迄今为止所做工作的优缺点,重点关注这些SEM研究在理论上和/或统计上合理的方式。最后,我们为未来使用SEM技术研究PDs提供了建议。(PsycINFO数据库记录)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验