Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Centre for Rehabilitation Research and Development, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M2, Canada.
Sensors (Basel). 2017 Jun 7;17(6):1321. doi: 10.3390/s17061321.
Faller classification in elderly populations can facilitate preventative care before a fall occurs. A novel wearable-sensor based faller classification method for the elderly was developed using accelerometer-based features from straight walking and turns. Seventy-six older individuals (74.15 ± 7.0 years), categorized as prospective fallers and non-fallers, completed a six-minute walk test with accelerometers attached to their lower legs and pelvis. After segmenting straight and turn sections, cross validation tests were conducted on straight and turn walking features to assess classification performance. The best "classifier model-feature selector" combination used turn data, random forest classifier, and select-5-best feature selector (73.4% accuracy, 60.5% sensitivity, 82.0% specificity, and 0.44 Matthew's Correlation Coefficient (MCC)). Using only the most frequently occurring features, a feature subset (minimum of anterior-posterior ratio of even/odd harmonics for right shank, standard deviation (SD) of anterior left shank acceleration SD, SD of mean anterior left shank acceleration, maximum of medial-lateral first quartile of Fourier transform (FQFFT) for lower back, maximum of anterior-posterior FQFFT for lower back) achieved better classification results, with 77.3% accuracy, 66.1% sensitivity, 84.7% specificity, and 0.52 MCC score. All classification performance metrics improved when turn data was used for faller classification, compared to straight walking data. Combining turn and straight walking features decreased performance metrics compared to turn features for similar classifier model-feature selector combinations.
在老年人中进行 Faller 分类可以在跌倒发生之前提供预防保健。本研究开发了一种基于新型可穿戴传感器的老年人跌倒分类方法,使用直走和转弯时的加速度计特征。76 名老年人(74.15±7.0 岁)分为潜在跌倒者和非跌倒者,在小腿和骨盆上佩戴加速度计进行六分钟步行测试。在分段直走和转弯部分后,在直走和转弯行走特征上进行交叉验证测试,以评估分类性能。最佳“分类器模型-特征选择器”组合使用转弯数据、随机森林分类器和 select-5-best 特征选择器(准确率为 73.4%,敏感度为 60.5%,特异性为 82.0%,马修相关系数(MCC)为 0.44)。仅使用最常出现的特征,特征子集(右小腿偶数/奇数谐波的前-后比的最小值、左前小腿加速度 SD 的标准差、左前小腿平均加速度的标准差、下背部 Fourier 变换(FQFFT)中位数的最大的内侧-外侧、下背部前后 FQFFT 的最大值),实现了更好的分类结果,准确率为 77.3%,敏感度为 66.1%,特异性为 84.7%,MCC 评分为 0.52。与直走数据相比,转弯数据用于跌倒者分类时,所有分类性能指标都有所提高。与转弯特征相比,转弯和直走特征的组合使用降低了类似分类器模型-特征选择器组合的性能指标。