Ma Chuang, Wei Qin, Cao Bo, Cheng Xinchun, Tian Juling, Pu Hongwei, Yusufu Aihemaitijiang, Cao Li
Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University Chang Ji Branch, Chang Ji, China.
PLoS One. 2017 Mar 30;12(3):e0172499. doi: 10.1371/journal.pone.0172499. eCollection 2017.
The main limitation of tissue engineering lies in the inability to stimulate osteogenesis, angiogenesis of stem cells and broad-spectrum antimicrobial activity. However, the development of multifunctional bioactive materials with these capabilities remains a great challenge. In this study, we prepared mesoporous silica nanoparticles encapsulated with silver nanocrystals (AG-MSN) with uniform sphere size and mesopores. Platelet-derived growth factor BB (PDGF-BB) was effectively loaded in the AG-MSN mesopores (P-AG-MSN). The silicon ions (Si) released by P-AG-MSN stimulate osteogenic differentiation of bone marrow stromal cells (BMSC) by activating the alkaline phosphatase (ALP) activity of bone-related genes and increasing protein (OCN, RUNX2 and OPN) expression. Ag+ ions could be slowly released from the interior of the shell, highlighting their durable antibacterial activity. The sustained release of PDGF-BB from P-AG-MSN stimulated the angiogenic differentiation of BMSC, as indicated by the enhanced secretion of vascular endothelial growth factor (VEGF), HIF-1α, HGF and ANG-1 and protein expression. Our results show that P-AG-MSN can clearly promote BMSC osteostimulation and vascularization. This research serves as a preliminary study of the utilization of this multifunctional mixture to fabricate a new active biological scaffold that integrates BMSC osteostimulation, vascularization and bactericidal effects by 3D printing technology.
组织工程的主要局限性在于无法刺激干细胞的成骨、血管生成以及广谱抗菌活性。然而,开发具有这些功能的多功能生物活性材料仍然是一个巨大的挑战。在本研究中,我们制备了包裹有银纳米晶体的介孔二氧化硅纳米颗粒(AG-MSN),其具有均匀的球形尺寸和介孔。血小板衍生生长因子BB(PDGF-BB)被有效地负载在AG-MSN的介孔中(P-AG-MSN)。P-AG-MSN释放的硅离子(Si)通过激活骨相关基因的碱性磷酸酶(ALP)活性并增加蛋白质(骨钙素、RUNX2和骨桥蛋白)表达来刺激骨髓基质细胞(BMSC)的成骨分化。Ag+离子可从壳内部缓慢释放,突出了其持久的抗菌活性。P-AG-MSN中PDGF-BB的持续释放刺激了BMSC的血管生成分化,这通过血管内皮生长因子(VEGF)、HIF-1α、HGF和ANG-1分泌的增强以及蛋白质表达得以体现。我们的结果表明,P-AG-MSN可以明显促进BMSC的骨刺激和血管生成。本研究作为利用这种多功能混合物通过3D打印技术制造一种整合BMSC骨刺激、血管生成和杀菌作用的新型活性生物支架的初步研究。