Jeacock Laura, Baker Nicola, Wiedemar Natalie, Mäser Pascal, Horn David
The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom.
Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.
PLoS Pathog. 2017 Mar 30;13(3):e1006307. doi: 10.1371/journal.ppat.1006307. eCollection 2017 Mar.
Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.
水甘油通道蛋白(AQPs)可运输水和甘油,在致病性锥虫的药物摄取过程中发挥重要作用。例如,人类感染性非洲锥虫布氏冈比亚锥虫中的AQP2负责美拉胂醇和喷他脒的摄取,并且已发现美拉胂醇治疗失败是由于这些寄生虫中AQP2存在缺陷。为了进一步探究这些转运蛋白的作用,我们构建了一个缺失所有三个AQP基因的布氏布氏锥虫菌株。三基因缺失的布氏布氏锥虫aqp1-2-3在体外仅表现出非常轻微的生长缺陷,能在小鼠体内建立感染并能从低渗休克中有效恢复。然而,aqp1-2-3锥虫确实表现出甘油摄取和外排缺陷。它们无法积累甘油或利用甘油作为碳源,并且对水杨羟肟酸(SHAM)、没食子酸辛酯或没食子酸丙酯表现出更高的敏感性;这些锥虫替代氧化酶(TAO)抑制剂可将细胞内甘油增加到有毒水平。值得注意的是,单独破坏AQP2会产生具有甘油运输缺陷的细胞。与这些发现一致,相对于对美拉胂醇敏感的参考菌株,存在AQP2缺陷、对美拉胂醇耐药的临床分离株对TAO抑制剂SHAM、没食子酸丙酯和阿斯科呋喃酮敏感。我们得出结论,非洲锥虫的AQPs对于生存能力和渗透压调节并非必需,但它们对药物摄取、甘油运输和呼吸抑制剂敏感性做出了重要贡献。我们还讨论了如何利用本文所述的AQP依赖性对美拉胂醇和呼吸抑制剂的反向敏感性。