Pemberton Travis A, Chen Mengbin, Harris Golda G, Chou Wayne K W, Duan Lian, Köksal Mustafa, Genshaft Alex S, Cane David E, Christianson David W
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.
Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912, United States.
Biochemistry. 2017 Apr 11;56(14):2010-2023. doi: 10.1021/acs.biochem.7b00137. Epub 2017 Mar 31.
Terpenoid synthases catalyze isoprenoid cyclization reactions underlying the generation of more than 80,000 natural products. Such dramatic chemodiversity belies the fact that these enzymes generally consist of only three domain folds designated as α, β, and γ. Catalysis by class I terpenoid synthases occurs exclusively in the α domain, which is found with α, αα, αβ, and αβγ domain architectures. Here, we explore the influence of domain architecture on catalysis by taxadiene synthase from Taxus brevifolia (TbTS, αβγ), fusicoccadiene synthase from Phomopsis amygdali (PaFS, (αα)), and ophiobolin F synthase from Aspergillus clavatus (AcOS, αα). We show that the cyclization fidelity and catalytic efficiency of the α domain of TbTS are severely compromised by deletion of the βγ domains; however, retention of the β domain preserves significant cyclization fidelity. In PaFS, we previously demonstrated that one α domain similarly influences catalysis by the other α domain [ Chen , M. , Chou , W. K. W. , Toyomasu , T. , Cane , D. E. , and Christianson , D. W. ( 2016 ) ACS Chem. Biol. 11 , 889 - 899 ]. Here, we show that the hexameric quaternary structure of PaFS enables cluster channeling. We also show that the α domains of PaFS and AcOS can be swapped so as to make functional chimeric αα synthases. Notably, both cyclization fidelity and catalytic efficiency are altered in all chimeric synthases. Twelve newly formed and uncharacterized C diterpene products and three C sesterterpene products are generated by these chimeras. Thus, engineered αβγ and αα terpenoid cyclases promise to generate chemodiversity in the greater family of terpenoid natural products.
萜类合酶催化异戊二烯环化反应,这些反应是超过80000种天然产物生成的基础。如此显著的化学多样性掩盖了一个事实,即这些酶通常仅由三种指定为α、β和γ的结构域折叠组成。I类萜类合酶的催化作用仅发生在α结构域,该结构域存在于α、αα、αβ和αβγ结构域架构中。在这里,我们探讨了结构域架构对来自短叶红豆杉的紫杉二烯合酶(TbTS,αβγ)、来自扁桃叶拟茎点霉的香豆二烯合酶(PaFS,(αα))和来自棒曲霉的蛇孢菌素F合酶(AcOS,αα)催化作用的影响。我们表明,TbTS的α结构域的环化保真度和催化效率因βγ结构域的缺失而严重受损;然而,β结构域的保留保留了显著的环化保真度。在PaFS中,我们之前证明一个α结构域同样会影响另一个α结构域的催化作用[Chen, M., Chou, W. K. W., Toyomasu, T., Cane, D. E., and Christianson, D. W. (2016) ACS Chem. Biol. 11, 889 - 899]。在这里,我们表明PaFS的六聚体四级结构能够实现簇通道化。我们还表明,PaFS和AcOS的α结构域可以交换,从而制造出有功能的嵌合αα合酶。值得注意的是,所有嵌合合酶的环化保真度和催化效率都发生了改变。这些嵌合体产生了12种新形成的、未表征的C二萜产物和3种C倍半萜产物。因此,工程化的αβγ和αα萜类环化酶有望在更大的萜类天然产物家族中产生化学多样性。