Gaynes Matthew N, Schultz Kollin, Wenger Eliott S, Marmorstein Ronen, Christianson David W
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA.
Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
bioRxiv. 2025 Aug 20:2025.08.20.671325. doi: 10.1101/2025.08.20.671325.
Copalyl diphosphate synthase from (PvCPS) is a bifunctional class II terpene synthase containing a prenyltransferase that produces geranylgeranyl diphosphate (GGPP) and a class II cyclase that utilizes GGPP as a substrate to generate the bicyclic diterpene copalyl diphosphate. The various stereoisomers of copalyl diphosphate establish the greater family of labdane natural products, many of which have environmental and medicinal impact. Understanding structure-function relationships in class II diterpene synthases is crucial for guiding protein engineering campaigns aimed at the generation of diverse bicyclic diterpene scaffolds. However, only a limited number of structures are available for class II cyclases from bacteria, plants, and humans, and no structures are available for a class II cyclase from a fungus. Further, bifunctional class II terpene synthases have not been investigated with regard to substrate channeling between the prenyltransferase and the cyclase. Here, we report the 2.9 Å-resolution cryo-EM structure of the 63-kD class II cyclase domain from PvCPS. Comparisons with bacterial and plant copalyl diphosphate synthases reveal conserved residues that likely guide the formation of the bicyclic labdane core, but divergent catalytic dyads that mediate the final deprotonation step of catalysis. Substrate competition experiments reveal preferential GGPP transit from the PvCPS prenyltransferase to the cyclase, even when prepared as separate constructs. These results are consistent with a model in which transient prenyltransferase-cyclase association facilitates substrate channeling due to active site proximity.
来自[植物名称未给出]的柯巴酯二磷酸合酶(PvCPS)是一种双功能II类萜烯合酶,它包含一个产生香叶基香叶基二磷酸(GGPP)的异戊烯基转移酶和一个以GGPP为底物生成双环二萜柯巴酯二磷酸的II类环化酶。柯巴酯二磷酸的各种立体异构体构成了半日花烷天然产物的大家族,其中许多具有环境和药用影响。了解II类二萜合酶的结构 - 功能关系对于指导旨在生成多样双环二萜支架的蛋白质工程活动至关重要。然而,细菌、植物和人类的II类环化酶仅有有限数量的结构可用,且尚无真菌来源的II类环化酶结构。此外,尚未对双功能II类萜烯合酶在异戊烯基转移酶和环化酶之间的底物通道化进行研究。在此,我们报道了PvCPS的63-kD II类环化酶结构域的2.9 Å分辨率冷冻电镜结构。与细菌和植物柯巴酯二磷酸合酶的比较揭示了可能指导双环半日花烷核心形成的保守残基,但介导催化最终去质子化步骤的催化二元体存在差异。底物竞争实验表明,即使将其制备为单独的构建体,GGPP也优先从PvCPS异戊烯基转移酶转移至环化酶。这些结果与一个模型一致,即由于活性位点接近,异戊烯基转移酶 - 环化酶的瞬时结合促进了底物通道化。