Suppr超能文献

基于耦合双线性模型的人脸补光的 SSPP 问题中的人脸识别。

Face Recognition in SSPP Problem Using Face Relighting Based on Coupled Bilinear Model.

机构信息

Department of Computer Science and Engineering, Dankook University, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Korea.

Police Science Institute, 100-50, Hwangsan-gil, Sinchang-myeon, Asan-si, Chungcheongnam-do 31539, Korea.

出版信息

Sensors (Basel). 2018 Dec 22;19(1):43. doi: 10.3390/s19010043.

Abstract

There have been decades of research on face recognition, and the performance of many state-of-the-art face recognition algorithms under well-conditioned environments has become saturated. Accordingly, recent research efforts have focused on difficult but practical challenges. One such issue is the single sample per person (SSPP) problem, i.e., the case where only one training image of each person. While this problem is challenging because it is difficult to establish the within-class variation, working toward its solution is very practical because often only a few images of a person are available. To address the SSPP problem, we propose an efficient coupled bilinear model that generates virtual images under various illuminations using a single input image. The proposed model is inspired by the knowledge that the illuminance of an image is not sensitive to the poor quality of a subspace-based model, and it has a strong correlation to the image itself. Accordingly, a coupled bilinear model was constructed that retrieves the illuminance information from an input image. This information is then combined with the input image to estimate the texture information, from which we can generate virtual illumination conditions. The proposed method can instantly generate numerous virtual images of good quality, and these images can then be utilized to train the feature space for resolving SSPP problems. Experimental results show that the proposed method outperforms the existing algorithms.

摘要

人脸识别已经有几十年的研究历史,许多最先进的人脸识别算法在良好条件下的性能已经趋于饱和。因此,最近的研究工作集中在困难但实际的挑战上。其中一个问题是单人单样本(SSPP)问题,即每个人只有一个训练图像的情况。虽然这个问题具有挑战性,因为很难建立类内变化,但解决这个问题非常实际,因为通常只有一个人的几张图像可用。为了解决 SSPP 问题,我们提出了一种高效的耦合双线性模型,该模型使用单个输入图像在各种光照下生成虚拟图像。所提出的模型的灵感来自这样一个知识,即图像的照度对基于子空间的模型的质量不敏感,并且与图像本身有很强的相关性。因此,构建了一个耦合的双线性模型,从输入图像中检索照度信息。然后将该信息与输入图像相结合,以估计纹理信息,从中我们可以生成虚拟光照条件。所提出的方法可以立即生成大量高质量的虚拟图像,然后可以利用这些图像来训练解决 SSPP 问题的特征空间。实验结果表明,所提出的方法优于现有的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b0b/6339127/dd2918f263bd/sensors-19-00043-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验