UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
Carbohydr Polym. 2017 Jun 1;165:384-393. doi: 10.1016/j.carbpol.2017.02.050. Epub 2017 Feb 17.
Antimicrobial peptides (AMP) are promising alternatives to classical antibiotics, due to their high specificity and potency at low concentrations, and low propensity to elicit pathogen resistance. Immobilization of AMP onto biomaterials is an emergent field of research, towards creation of novel antimicrobial materials able to avoid formation of biofilms on the surfaces of medical devices. Herein, we report the chemical route towards one such material, where chitosan was used as biocompatible carrier for the covalent grafting of Dhvar-5, a well-known potent AMP, via the chemoselective ("click") Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The material's structure, as well as peptide loading, were confirmed by Fourier-transformed infra-red (FT-IR) and X-ray photoelectron (XPS) spectroscopies, and by Amino Acid Analysis (AAA), respectively. Results herein reported demonstrate that, with proper optimization, the "click" CuAAC is an attractive approach for the tethering of AMP onto chitosan, in order to create novel antimicrobial materials potentially valuable for biomedical applications.
抗菌肽 (AMP) 是传统抗生素的有前途的替代品,因为它们在低浓度下具有高特异性和效力,并且不易引发病原体产生耐药性。将 AMP 固定在生物材料上是一个新兴的研究领域,旨在创造能够避免医疗器械表面形成生物膜的新型抗菌材料。在此,我们报告了一种这样的材料的化学途径,其中壳聚糖被用作通过化学选择性(“点击”)Cu(I)催化的叠氮化物-炔烃环加成(CuAAC)将已知的强效 AMP Dhvar-5 共价接枝到生物相容性载体上的方法。材料的结构以及肽负载量分别通过傅里叶变换红外(FT-IR)和 X 射线光电子能谱(XPS)光谱以及氨基酸分析(AAA)进行了确认。在此报道的结果表明,通过适当的优化,“点击”CuAAC 是将 AMP 接枝到壳聚糖上的一种有吸引力的方法,以创建可能对生物医学应用有价值的新型抗菌材料。