Suppr超能文献

使用静息态功能磁共振成像对脑肿瘤患者腹侧躯体运动网络进行术前脑图谱绘制。

Presurgical Brain Mapping of the Ventral Somatomotor Network in Patients with Brain Tumors Using Resting-State fMRI.

作者信息

Yahyavi-Firouz-Abadi N, Pillai J J, Lindquist M A, Calhoun V D, Agarwal S, Airan R D, Caffo B, Gujar S K, Sair H I

机构信息

From the Department of Radiology (N.Y.-F.-A.), Mid-Atlantic Permanente Medical Group of Kaiser Permanente, Kensington, Maryland

Division of Neuroradiology, (N.Y.-F.-A., J.J.P., S.A., R.D.A., S.K.G., H.I.S.), The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.

出版信息

AJNR Am J Neuroradiol. 2017 May;38(5):1006-1012. doi: 10.3174/ajnr.A5132. Epub 2017 Mar 31.

Abstract

BACKGROUND AND PURPOSE

Resting-state fMRI readily identifies the dorsal but less consistently the ventral somatomotor network. Our aim was to assess the relative utility of resting-state fMRI in the identification of the ventral somatomotor network via comparison with task-based fMRI in patients with brain tumor.

MATERIALS AND METHODS

We identified 26 surgically naïve patients referred for presurgical fMRI brain mapping who had undergone both satisfactory ventral motor activation tasks and resting-state fMRI. Following standard preprocessing for task-based fMRI and resting-state fMRI, general linear model analysis of the ventral motor tasks and independent component analysis of resting-state fMRI were performed with the number of components set to 20, 30, 40, and 50. Visual overlap of task-based fMRI and resting-state fMRI at different component levels was assessed and categorized as full match, partial match, or no match. Rest-versus-task-fMRI concordance was calculated with Dice coefficients across varying fMRI thresholds before and after noise removal. Multithresholded Dice coefficient volume under the surface was calculated.

RESULTS

The ventral somatomotor network was identified in 81% of patients. At the subject level, better matches between resting-state fMRI and task-based fMRI were seen with an increasing order of components (53% of cases for 20 components versus 73% for 50 components). Noise-removed group-mean volume under the surface improved as component numbers increased from 20 to 50, though ANOVA demonstrated no statistically significant difference among the 4 groups.

CONCLUSIONS

In most patients, the ventral somatomotor network can be identified with an increase in the probability of a better match at a higher component number. There is variable concordance of the ventral somatomotor network at the single-subject level between resting-state and task-based fMRI.

摘要

背景与目的

静息态功能磁共振成像(fMRI)能够轻易识别背侧躯体运动网络,但对腹侧躯体运动网络的识别却不太一致。我们的目的是通过与脑肿瘤患者的基于任务的fMRI进行比较,评估静息态fMRI在识别腹侧躯体运动网络方面的相对效用。

材料与方法

我们确定了26例未经手术的患者,这些患者因术前fMRI脑图谱检查而被转诊,他们均接受了令人满意的腹侧运动激活任务和静息态fMRI检查。在对基于任务的fMRI和静息态fMRI进行标准预处理后,对腹侧运动任务进行一般线性模型分析,并对静息态fMRI进行独立成分分析,成分数量设置为20、30、40和50。评估基于任务的fMRI和静息态fMRI在不同成分水平上的视觉重叠情况,并分类为完全匹配、部分匹配或不匹配。在去除噪声前后,使用Dice系数计算静息态与基于任务的fMRI的一致性。计算表面下的多阈值Dice系数体积。

结果

81%的患者识别出了腹侧躯体运动网络。在个体水平上,随着成分数量的增加,静息态fMRI与基于任务的fMRI之间的匹配度更好(20个成分时为53%的病例,50个成分时为73%)。随着成分数量从20增加到50,表面下去除噪声后的组均值体积有所改善,尽管方差分析显示4组之间无统计学显著差异。

结论

在大多数患者中,可以识别出腹侧躯体运动网络,且在较高成分数量时匹配度更好的概率会增加。在个体水平上,静息态和基于任务的fMRI之间腹侧躯体运动网络的一致性存在差异。

相似文献

引用本文的文献

10
Functional MRI for Surgery of Gliomas.用于胶质瘤手术的功能磁共振成像
Curr Treat Options Neurol. 2017 Aug 23;19(10):34. doi: 10.1007/s11940-017-0469-y.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验